Hemodynamics and Tissue Temperature in Bone Union Area of Long Bones Primary Fractures and Refractures: in vivo Experiment
Azam A. Kosimov , Iskandar Yu. Khodzhanov , Natalia A. Kononovich
Traumatology and Orthopedics of Russia ›› 2022, Vol. 28 ›› Issue (4) : 159 -169.
Hemodynamics and Tissue Temperature in Bone Union Area of Long Bones Primary Fractures and Refractures: in vivo Experiment
Background. Adequate blood flow in tissues during bone union is a factor that enables to achieve positive treatment results.
Aim of study — to study in vivo experiment the features of temperature response and blood flow in consolidation area of tibial primary fractures and refractures.
Methods. A tibial fracture was simulated in rats and then immobilized with external fixator. In series 1 (n = 13) the fixation was kept until union. In series 2 (n = 18) a refracture was simulated 21 days after the surgery and refixed until union. The blood flow and tissue temperature were studied in the fracture area in normal conditions; 21 and 35 days after fracture or refracture; 28 days after the end of fixation.
Results. The temperature and blood flow were of the same type, but of different intensity. Three types of reactions were identified: 1) reduced blood flow velocity and tissue temperature, signs of venous outflow difficulty; 2) increased blood flow, unchanged venous outflow, reduced tissue temperature; 3) slight blood flow decrease, increased venous outflow, slight tissue temperature increase. By the end of fixation (35 days) all parameters in series 1 returned to normal. 28 days after the end of fixation the tissue temperature and venous outflow returned to normal in series 2 animals with the first and the second types of hemodynamics, their blood flow velocity decreased. As for the third type, the tissue temperature returned to normal, the venous outflow and the blood flow velocity increased.
Conclusion. In case of primary fractures, the blood flow and the tissue temperature normalized by the end of fixation. In case of refractures the changes persisted 1 month after the end of fixation.
fracture / refracture / hemodynamics / tissue temperature / experimental study
| [1] |
Khodzhanov I.Yu., Khrapovitskaya A.Yu., Kosimov A.A. [Refractures long bones in children (literature review)]. Ortopediya, travmatologiya i protezirovanie [Orthopedics, Traumatology and Prosthetics]. 2012;1:117-120. (In Russian). |
| [2] |
Ходжанов И.Ю., Храповицкая А.Ю., Косимов А.А. Рефрактуры длинных костей у детей (обзор литературы). Ортопедия, травматология и протезирование. 2012;1:117-120. |
| [3] |
Shalygina O.I., Kuznetsova N.L. [The reasons for promoting the development of long bones refracture after isolated andmultiple injuries]. Medicinskaya nauka i obrazovanie Urala [Medical Science and Education in the Urals]. 2012;13(3-1):120-122. (In Russian). |
| [4] |
Шалыгина О.И., Кузнецова Н.Л. Причины, способствующие развитию рефрактур длинных трубчатых костей после изолированных и множественных повреждений. Медицинская наука и образование Урала. 2012;13(3-1):120-122. |
| [5] |
Fernandez F.F., Langendörfer M., Wirth T., Eberhardt O. Failures and complications in intramedullary nailing of children’s forearm fractures. J Child Orthop. 2010;4(2):159-167. doi: 10.1007/s11832-010-0245-y. |
| [6] |
Starr K.A., Fillman R., Raney E.M. Reliability of radiographic assessment of distraction osteogenesis site. J Pediatr Orthop. 2004;24(1):26-29. doi: 10.1097/00004694-200401000-00006. |
| [7] |
Ten Berg P.W.L., Kraan R.B., Jens S., Maas M. Interobserver Reliability in Imaging-Based Fracture Union Assessment – Two Systematic Reviews. J Orthop Trauma. 2020;34(1):e31-e37. doi: 10.1097/BOT.0000000000001599. |
| [8] |
Atwan Y., Schemitsch E.H. Radiographic evaluations: Which are most effective to follow fracture healing? Injury. 2020;51(Suppl 2):S18-S22. doi: 10.1016/j.injury.2019.12.028. |
| [9] |
Litrenta J., Tornetta P. 3rd, Ricci W., Sanders R.W., O’Toole R.V., Nascone, J.W. et al. In vivo correlation of radiograhic scoring (radiographic union scale for tibia fractures) and biomechanical data in a sheep osteotomy model: can we define union radiographically? J Orthop Trauma. 2017;31(3):127-130. doi: 10.1097/BOT.0000000000000753. |
| [10] |
Kononovich N.A., Popkov A.V. [Hemodynamics in different muscle groups when treating comminuted fractures of leg bones (an experimental study)]. Mezhdunarodnyj zhurnal prikladnyh i fundamental’nyh issledovanij [International Journal of Applied and Fundamental Research]. 2015; (5-2):246-250. Available from: https://applied-research.ru/ru/article/view?id=6720. (In Russian). |
| [11] |
Кононович Н.А., Попков А.В. Гемодинамика в разных группах мышц при лечении оскольчатых переломов костей голени (экспериментальное исследование). Международный журнал прикладных и фундаментальных исследований. 2015;(5-2):246-250. Режим доступа: https://applied-research.ru/ru/article/view?id=6720. |
| [12] |
Sadoughi F., Behmanesh A., Najd Mazhar F., Joghataei M.T., Yazdani S., Shams R. et al. Bone Healing Monitoring in Bone Lengthening Using Bioimpedance. J Healthc Eng. 2022;2022:3226440. doi: 10.1155/2022/3226440. |
| [13] |
Glatt V., Evans C.H., Tetsworth K. A Concert between Biology and Biomechanics: The Influence of the Mechanical Environment on Bone Healing. Front Physiol. 2017;7:678. doi: 10.3389/fphys.2016.00678. |
| [14] |
Kononovich N.A., Shastov A.L. Use of impedance plethysmography for assessment of intraosseous hemodynamics in Ilizarov transosseous osteosynthesis. Biomed Eng. 2021;55(4):245-249. doi: 10.1007/s10527-021-10111-0. |
| [15] |
Han S., Proctor A.R., Vella J.B., Benoit D.S., Choe R. Non-invasive diffuse correlation tomography reveals spatial and temporal blood flow differences in murine bone grafting approaches. Biomed Opt Express. 2016;7(9):3262-3279. doi: 10.1364/BOE.7.003262. |
| [16] |
Ren J., Han S., Proctor A.R., Desa D.E., Ramirez G.A, Ching‐Roa V.R.D. et al. Longitudinal 3D blood flow distribution provided by diffuse correlation tomography during bone healing in a murine fracture model. Photochem Photobiol. 2020;96(2):380-387. doi. 10.1111/php.13201 |
| [17] |
Vatolin K.V., Pykov M.I., Vubornov D.Yu., Gurevich A.I., Sinitsyna N.V. [Possibility of complex ultrasound examination of the long bones fractures in children with normal osteogenesis]. Vestnik Rossijskogo nauchnogo centra rentgenoradiologii Minzdrava Rossii [Bulletin of the Russian Scientific Center for Roentgen Radiology]. 2011;(11-2). (In Russian). Available from: http://vestnik.rncrr.ru/vestnik/v11/papers/sinits_v11.htm. |
| [18] |
Ватолин К.В., Пыков М.И., Выборнов Ю.В., Гуревич А.И., Синицына Н.В. Возможности комплексной ультразвуковой диагностики репаративного остеогенеза в норме при переломах длинных костей у детей. Вестник Российского научного центра рентгенорадиологии. 2011;(11-2). Режим доступа: http://vestnik.rncrr.ru/vestnik/v11/papers/sinits_v11.htm. |
| [19] |
Zusko A.V., Sitko L.A., Nikonov V.M., Stepanov M.A., Tishenko A.B. [Ultrasound investigation of children long bone fracture including monitoring of reduction and reparation process]. Medicinskaya vizualizaciya [Medical Visualization]. 2012;6:112-119. (In Russian). |
| [20] |
Зюзько А.В., Ситко Л.А., Никонов В.М., Степанов М.А., Тищенко А.Б. Ультразвуковая диагностика переломов длинных костей у детей с мониторингом репозиции и репарации. Медицинская визуализация. 2012;6:112-119. |
| [21] |
Shpagina L.A., Karpenko A.G., Kolosov N.G., Shelepova N.V., Firsov S.A. [Microcirculation state in patients with the skeletal injury in dynamic treatment]. Vestnik novyh medicinskih tekhnologij [Journal of New Medical Technologies]. 2008;(1):107-110. (In Russian). |
| [22] |
Шпагина Л.А., Карпенко А.Г., Колосов Н.Г., Локтин Е.М., Шелепова Н.В., Фирсов С.А. Состояние микроциркуляции у больных со скелетной травмой в динамике лечения. Вестник новых медицинских технологий. 2008;(1):107-110. |
| [23] |
Shchurov V.A., Macukatov F.A. [Functional state of patients with fractures of the shin bones during treatment using the Matsoukidis-Shevtsov apparatus]. Ortopediya, travmatologiya i protezirovanie [Orthopedics, Traumatology and Prosthetics]. 2013;(2):69-72. (In Russian). |
| [24] |
Щуров В.А., Мацукатов Ф.А. Функциональное состояние больных с переломами костей голени при лечении с помощью аппарата Мацукидиса-Шевцова. Ортопедия, травматология и протезирование. 2013;(2):69-72. |
| [25] |
Kosimov A.A., Khodzhanov I.Iu., Gorbach E.N., Silanteva T.A., Diuriagina O.V., Borzunov D.Yu. [Morphological features of bone regeneration in simulated refracture of growing long bones]. Genij Ortopedii [Orthopaedic Genius]. 2019;25(4):555-560. (In Russian). doi: 10.18019/1028-4427-2019-25-4-555-560. |
| [26] |
Косимов А.А., Ходжанов И.Ю., Горбач Е.Н., Силантьева Т.А., Дюрягина О.В. Борзунов Д.Ю. Морфологические особенности регенерации костной ткани при экспериментальном моделировании рефрактуры длинных трубчатых костей в периоде их роста. Гений ортопедии. 2019;25(4):555-560. doi: 10.18019/1028-4427-2019-25-4-555-560 |
| [27] |
Pliefke J., Rademacher G., Zach A., Bauwens K., Ekkernkamp A., Eisenschenk A. Postoperative monitoring of free vascularized bone grafts in reconstruction of bone defects. Microsurgery. 2009;29(5):401-407. doi: 10.1002/micr.20662. |
| [28] |
Belokrylov N.M., Belokrylov A.N., Mukhamadeev I.S., Denisov A.S., Kiryakov V.N., Gorkovets K.I. [Damage to the major limb vessels with complete disturbance of blood flow in children (results of clinical observations)]. Genij Ortopedii [Orthopaedic Genius]. 2022;28(1):7-11. (In Russian). doi: 10.18019/1028-4427-2022-28-1-7-11. |
| [29] |
Белокрылов Н.М., Белокрылов А.Н., Мухамадеев И.С., Денисов А.С., Киряков В.Н., Горковец К.И. Повреждения магистральных сосудов конечностей с полным нарушением кровотока у детей (результаты клинических наблюдений). Гений ортопедии. 2022;28(1):7-11. doi: 10.18019/1028-4427-2022-28-1-7-11 |
| [30] |
Becker R.L., Siamwala J.H., Macias B.R., Hargens A.R. Tibia bone microvascular flow dynamics as compared to anterior tibial artery flow during body tilt. Aerosp Med Hum Perform. 2018;89(4):357-364. doi: 10.3357/AMHP.4928.2018. |
| [31] |
Rodrigues L.M., Rocha C., Ferreira H., Silva H. Different lasers reveal different skin microcirculatory flowmotion-data from the wavelet transform analysis of human hindlimb perfusion. Sci Rep. 2019;9(1):16951. doi: 10.1038/s41598-019-53213-2. |
| [32] |
Castaneda D., Esparza A., Ghamari M., Soltanpur C., Nazeran H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int J Biosens Bioelectron. 2018;4(4):195-202. doi: 10.15406/ijbsbe.2018.04.00125. |
| [33] |
Baklanova D.A., Shakirova F.V., Akhtyamov I.F., Klushkina Yu.A. [Arterial hemodynamics in rabbit hind limbs after intramedullary osteosynthesis using implants coated with titanium and hafnium nitrides]. Veterinarnyj vrach [Veterinary Surgeon]. 2015;(5):37-40. (In Russian). |
| [34] |
Бакланова Д.А., Шакирова Ф.В., Ахтямов И.Ф., Клюшкина Ю.А. Артериальная гемодинамика тазовых конечностей кролика при интрамедуллярном остеосинтезе имплантатами с покрытиями нитридами титана и гафния. Ветеринарный врач. 2015;(5): 37-40. |
| [35] |
Melnyk M., Henke T., Claes L., Augat P. Revascularisation during fracture healing with soft tissue injury. Arch Orthop Trauma Surg. 2008;128(10):1159-1165. doi: 10.1007/s00402-007-0543-0. |
| [36] |
Plakhov A.I., Kolesnikova L.I., Korytov L.I., Vinogradov V.G., Darenskaya M.A. [Changes in indicators of microcirculation in the early postoperative period in the treatment of diaphyseal fractures of the shin bones using a plate with limited contact]. Acta Biomedica Scientifica 2019;4(3):58-62. (In Russian). doi: 10.29413/ABS.2019-4.3.8. |
| [37] |
Плахов А.И., Колесникова Л.И., Корытов Л.И., Виноградов В.Г., Даренская М.А. Изменения показателей микроциркуляции в ранний послеоперационный период при лечении диафизарных переломов костей голени с помощью пластины с ограниченным контактом. Acta Biomedica Scientifica. 2019;4(3):58-62. doi: 10.29413/ABS.2019-4.3.8. |
| [38] |
Rakhmatulina A.A., Luneva S.N., Nakoskina N.V., Kliushin N.M., Lyulin S.V., Dolganova T.I. et al. [The serum vascular endothelial growth factor levels in patients with high-energy trauma complicated with infection]. Genij Ortopedii [Orthopaedic Genius]. 2021;27(3):325-330. doi: 10.18019/1028-4427-2021-27-3-325-330. |
| [39] |
Рахматулина А.А., Лунева С.Н., Накоскина Н.В., Клюшин Н.М., Люлин С.В., Долганова Т.И. и др. Содержание некоторых сосудистых факторов роста в сыворотке крови больных с гнойными осложнениями высокоэнергетической травмы. Гений ортопедии. 2021;27(3):325-330. doi: 10.18019/1028-4427-2021-27-3-325-330. |
| [40] |
Pisarev V.V., L’vov S.E., Vasin I.V., Tikhomolova E.V. [Regional hemodynamics in different types of surgical treatment of diaphyseal fractures of the shin bone]. Travmatologiya i ortopediya Rossii [Traumatology and Orthopedics in Russia]. 2012;(1):36-42. (In Russian). doi: 10.21823/2311-2905-2012-0-1-36-43. |
| [41] |
Писарев В.В., Львов С.Е., Васин И.В., Тихомолова Э.В. Регионарная гемодинамика при различных видах оперативного лечения диафизарных переломов костей голени. Травматология и ортопедия России. 2012;1:36-42. doi: 10.21823/2311-2905-2012-0-1-36-43. |
| [42] |
Kalbas Y., Qiao Z., Horst K., Teuben M., Tolba R.H., Hildebrand F. et al. Early local microcirculation is improved after intramedullary nailing in comparison to external fixation in a porcine model with a femur fracture. Eur J Trauma Emerg Surg. 2018;44(5):689-696. doi: 10.1007/s00068-018-0991-y. |
Eco-Vector
/
| 〈 |
|
〉 |