Disengagement of Polyethylene Insert Locking Mechanism in Modular Tibial Components for Knee Arthroplasty: A Case Report

Chugaev V. Chugaev , Taras A. Kuliaba , Aleksey I. Petukhov , Anastasiia I. Martynenko

Traumatology and Orthopedics of Russia ›› 2024, Vol. 30 ›› Issue (1) : 120 -128.

PDF (666KB)
Traumatology and Orthopedics of Russia ›› 2024, Vol. 30 ›› Issue (1) : 120 -128. DOI: 10.17816/2311-2905-17411
Case Reports
research-article

Disengagement of Polyethylene Insert Locking Mechanism in Modular Tibial Components for Knee Arthroplasty: A Case Report

Author information +
History +
PDF (666KB)

Abstract

Background. Modular tibial components for knee arthroplasty are used in the majority of modern knee replacement systems. Despite a number of limitations, there are many aspects that make these types of implants indispensable for orthopedic surgeons.

Aim — to demonstrate possible risks associated with a modular polyethylene liner with metal locking clip using a clinical case as an example.

Case description. We present a case of primary total knee arthroplasty in a 70-year-old female patient. The surgery was performed by an experienced surgical team and resulted in good early radiologic and functional treatment outcome. After discharge, approximately 10 days after surgery, the patient developed knee pain. Control X-rays showed migration of the metal pin locking the polyethylene insert. The patient underwent an emergency revision surgery with replacement of the clip. The authors analyze possible causes of this complication and ways of its prevention.

Conclusion. Migration of the insert locking element and dislocation of the insert in locked systems are quite rare complications of the knee arthroplasty. Their causes are soft tissue imbalance of the knee joint during arthroplasty and a number of technical errors. The very fact of using modular components of the joint is a predisposing factor for the disassociation of these modules.

Keywords

total knee arthroplasty / liner dislocation / complications after arthroplasty

Cite this article

Download citation ▾
Chugaev V. Chugaev, Taras A. Kuliaba, Aleksey I. Petukhov, Anastasiia I. Martynenko. Disengagement of Polyethylene Insert Locking Mechanism in Modular Tibial Components for Knee Arthroplasty: A Case Report. Traumatology and Orthopedics of Russia, 2024, 30(1): 120-128 DOI:10.17816/2311-2905-17411

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Castellarin G., Bori E., Menon A., Innocenti B. The effect of different insert design congruencies on the kinematics of a mobile bearing TKA: A cadaveric study. J Orthop. 2022;34:89-93. doi: 10.1016/j.jor.2022.07.018.

[2]

Castellarin G., Bori E., Menon A., Innocenti B. The effect of different insert design congruencies on the kinematics of a mobile bearing TKA: A cadaveric study. J Orthop. 2022 Aug 10; 34:89-93. https://doi.org/10.1016/j.jor.2022.07.018.

[3]

Stulberg S.D., Goyal N. Which Tibial Tray Design Achieves Maximum Coverage and Ideal Rotation: Anatomic, Symmetric, or Asymmetric? An MRI-based study. J Arthroplasty. 2015;30(10):1839-1841. doi: 10.1016/j.arth.2015.04.033.

[4]

Stulberg S.D., Goyal N. Which Tibial Tray Design Achieves Maximum Coverage and Ideal Rotation: Anatomic, Symmetric, or Asymmetric? An MRI-based study. J Arthroplasty. 2015 Oct;30(10):1839-41. https://doi.org/10.1016/j.arth.2015.04.033.

[5]

Longo U.G., Ciuffreda M., D’Andrea V., Mannering N., Locher J., Denaro V. All-polyethylene versus metal-backed tibial component in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2017;25(11):3620-3636. doi: 10.1007/s00167-016-4168-0.

[6]

Longo U.G., Ciuffreda M., D'Andrea V., Mannering N., Locher J., Denaro V. All-polyethylene versus metal-backed tibial component in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2017 Nov;25(11):3620-3636. https://doi.org/10.1007/s00167-016-4168-0.

[7]

AbuMoussa S., White C.C. 4th, Eichinger J.K., Friedman R.J. All-Polyethylene versus Metal-Backed Tibial Components in Total Knee Arthroplasty. J Knee Surg. 2019;32(8):714-718. doi: 10.1055/s-0039-1683979.

[8]

AbuMoussa S., White C.C., Eichinger J.K., Friedman R.J. All-Polyethylene versus Metal-Backed Tibial Components in Total Knee Arthroplasty. J Knee Surg. 2019 Aug;32(8):714-718. https://doi.org/10.1055/s-0039-1683979.

[9]

Łapaj Ł, Mróz A., Kokoszka P., Markuszewski J., Wendland J., Helak-Łapaj C., et al. Peripheral snap-fit locking mechanisms and smooth surface finish of tibial trays reduce backside wear in fixed-bearing total knee arthroplasty. Acta Orthop. 2017;88(1): 62-69. doi: 10.1080/17453674.2016.1248202.

[10]

Lapaj L., Mroz A., Kokoszka P., Markuszewski J., Wendland J., Helak-Lapaj C., Kruczynski J. (2017). Peripheral snap-fit locking mechanisms and smooth surface finish of tibial trays reduce backside wear in fixed-bearing total knee arthroplasty. Acta Orthopaedica, 88(1), 62-¬¬¬-69. https://doi.org/10.1080/17453674.2016.1248202.

[11]

Conditt M.A., Ismaily S.K., Alexander J.W., Noble P.C. Backside wear of modular ultra-high molecular weight polyethylenetibial inserts. J Bone Joint Surg Am. 2004;86(5):1031-1037. doi: 10.2106/00004623-200405000-00022.

[12]

Conditt M.A., Ismaily S.K., Alexander J.W., Noble P.C. Backside wear of modular ultra-high molecular weight polyethylenetibial inserts. J Bone Joint Surg Am. 2004 May;86(5):1031-7. https://doi.org/10.2106/00004623-200405000-00022.

[13]

Thienpont E. Failure of tibial polyethylene insert locking mechanism in posterior stabilized arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2013;21(12):2685-2688. doi: 10.1007/s00167-012-2018-2.

[14]

Thienpont E. Failure of tibial polyethylene insert locking mechanism in posterior stabilized arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2013 Dec;21(12):2685-8. https://doi.org/10.1007/s00167-012-2018-2.

[15]

Chen C.E., Juhn R.J., Ko J.Y. Dissociation of polyethylene insert from the tibial baseplate following revision total knee arthroplasty. J Arthroplasty. 2011;26(2):339.e11-339.e13. doi: 10.1016/j.arth.2010.04.016.

[16]

Chen C.E., Juhn R.J., Ko J.Y. Dissociation of polyethylene insert from the tibial baseplate following revision total knee arthroplasty. J Arthroplasty. 2011 Feb; 26(2): 339.e11-3. https://doi.org/10.1016/j.arth.2010.04.016.

[17]

Sisko Z.W., Teeter M.G., Lanting B.A., Howard J.L., McCalden R.W., Naudie D.D., et al. Current Total Knee Designs: Does Baseplate Roughness or Locking Mechanism Design Affect Polyethylene Backside Wear? Clin Orthop Relat Res. 2017;475(12):2970-2980. doi: 10.1007/s11999-017-5494-3.

[18]

Sisko Z.W., Teeter M.G., Lanting B.A., Howard J.L., McCalden R.W., Naudie D.D., MacDonald S.J., Vasarhelyi E.V. Current Total Knee Designs: Does Baseplate Roughness or Locking Mechanism Design Affect Polyethylene Backside Wear? Clin Orthop Relat Res. 2017 Dec;475(12):2970-2980. http://doi.org/10.1007/s11999-017-5494-3.

[19]

Hepinstall M.S., Rodriguez J.A. Polyethylene subluxation: a radiographic sign of locking mechanism failure after modular total knee arthroplasty. J Arthroplasty. 2011;26(1):98-102. doi: 10.1016/j.arth.2009.10.020.

[20]

Hepinstall M.S., Rodriguez J.A. Polyethylene subluxation: a radiographic sign of locking mechanism failure after modular total knee arthroplasty. J Arthroplasty. 2011 Jan;26(1):98-102. https://doi.org/10.1016/j.arth.2009.10.020.

[21]

Sanders A.P., Raeymaekers B. The effect of polyethylene creep on tibial insert locking screw loosening and back-out in prosthetic knee joints. J Mech Behav Biomed Mater. 2014;38:1-5. doi: 10.1016/j.jmbbm.2014.06.002.

[22]

Sanders A.P., Raeymaekers B. The effect of polyethylene creep on tibial insert locking screw loosening and back-out in prosthetic knee joints. J Mech Behav Biomed Mater. 2014 Oct: 38:1-5. http://doi.org/10.1016/j.jmbbm.2014.06.002.

[23]

Чугаев Д.В., Кравцов Е.Д., Корнилов Н.Н., Куляба Т.А. Анатомо-биомеханические особенности латерального отдела коленного сустава и связанные с с ними технические аспекты одномыщелкового эндопротезирования: лекция. Травматология и ортопедия России. 2023;29(2):144-158. doi: 10.17816/2311-2905-2042. Chugaev D.V., Kravtsov E.D., Kornilov N.N., Kulyaba T.A. Anatomical and Biomechanical Features of the Lateral Compartment of the Knee and Associated Technical Aspects of Unicompartmental Knee Arthroplasty: Lecture. Traumatology and Orthopedics of Russia. 2023;29(2):144-158. doi: 10.17816/2311-2905-2042. (In Russian).

[24]

Chugaev D.V., Kravtsov E.D., Kornilov N.N., Kuliaba T.A. Anatomical and Biomechanical Features of the Lateral Compartment of the Knee and Associated Technical Aspects of Unicompartmental Knee Arthroplasty: Lecture. Traumatology and Orthopedics of Russia. 2023;29(2):144-158. https://doi.org/10.17816/2311-2905-2042.

[25]

Rapuri V.R., Clarke H.D., Spangehl M.J., Beauchamp C.P. Five cases of failure of the tibial polyethylene insert locking mechanism in one design of constrained knee arthroplasty. J Arthroplasty. 2011;26(6):976.e21-976.e24. doi: 10.1016/j.arth.2010.07.013.

[26]

Rapuri V.R., Clarke H.D., Spangehl M.J., Beauchamp C.P. Five cases of failure of the tibial polyethylene insert locking mechanism in one design of constrained knee arthroplasty. J Arthroplasty. 2011 Sep;26(6): 976.e21-4. https://doi.org/10.1016/j.arth.2010.07.013.

[27]

Cho W.S., Youm Y.S. Migration of polyethylene fixation screw after total knee arthroplasty. J Arthroplasty. 2009;24(5):825.e5-825.e9. doi: 10.1016/j.arth.2008.07.011.

[28]

Cho W.S., Youm Y.S. Migration of polyethylene fixation screw after total knee arthroplasty. J Arthroplasty. 2009 Aug;24(5): 825.e5-9. https://doi.org/10.1016/j.arth.2008.07.011.

[29]

Scott R.D., Chmell M.J. Balancing the posterior cruciate ligament during cruciate-retaining fixed and mobile-bearing total knee arthroplasty: description of the pull-out lift-off and slide-back tests. J Arthroplasty. 2008;23(4):605-608. doi: 10.1016/j.arth.2007.11.018.

[30]

Scott R.D., Chmell M.J. Balancing the posterior cruciate ligament during cruciate-retaining fixed and mobile-bearing total knee arthroplasty: description of the pull-out lift-off and slide-back tests. J Arthroplasty. 2008 Jun;23(4):605-8. https://doi.org/10.1016/j.arth.2007.11.018.

[31]

Migon E.Z., de Freitas G.L, Rodrigues M.W., de Oliveira G.K., de Almeida L.G., Schwartsmann C.R. Spontaneous dislocation of the polyethylene component following knee revision arthroplasty: case report. Rev Bras Ortop. 2014;50(1):114-116. doi: 10.1016/j.rboe.2014.12.002.

[32]

Migon E.Z., de Freitas G.L, Rodrigues M.W., de Oliveira G.K., de Almeida L.G., Schwartsmann C.R. Spontaneous dislocation of the polyethylene component following knee revision arthroplasty: case report. Rev Bras Ortop. 2014 Dec 29;50(1):114-6. https://doi.org/10.1016/j.rboe.2014.12.002.

[33]

Jindal S., Bansal V., Ahmed M. Disengagement of tibial insert locking pin in total knee arthroplasty - A rare failure case report. J Clin Orthop Trauma. 2022;33:101996. doi: 10.1016/j.jcot.2022.101996.

[34]

Jindal S., Bansal V., Ahmed M. Disengagement of tibial insert locking pin in total knee arthroplasty - A rare failure case report. J Clin Orthop Trauma. 2022 Aug 21:33:101996. https://doi.org/10.1016/j.jcot.2022.101996.

[35]

Nachtnebl L., Tomáš T., Apostolopoulos V., Pazourek L., Mahdal M. Long-Term Results of Total Knee Replacement Using P.F.C. Sigma System with an All-Polyethylene Tibial Component. Acta Chir Orthop Traumatol Cech. 2021;88(6):412-417. doi: 10.55095/achot2021/061. (In Czech).

[36]

Nachtnebl L., Tomas T., Apostolopoulos V., Pazourek L., Mahdal M.

[37]

Brihault J., Navacchia A., Pianigiani S., Labey L., De Corte R., Pascale V., et al. All-polyethylene tibial components generate higher stress and micromotions than metal-backed tibial components in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2016;24(8):2550-2559. doi: 10.1007/s00167-015-3630-8.

[38]

Long-Term Results of Total Knee Replacement Using P.F.C. Sigma System with an All-Polyethylene Tibial Component. Acta Chir Orthop Traumatol Cech. 2021; 88(6):412-417. https://doi.org/10.55095/achot2021/061.

[39]

Wasielewski R.C., Parks N., Williams I., Surprenant H., Collier J.P., Engh G. Tibial insert undersurface as a contributing source of polyethylene wear debris. Clin Orthop Relat Res. 1997;(345):53-59.

[40]

Brihault J., Navacchia A., Pianigiani S., Labey L., De Corte R., Pascale V., Innocenti B. All-polyethylene tibial components generate higher stress and micromotions than metal-backed tibial components in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2016 Aug;24(8):2550-9.

[41]

Wasielewski R.C. The causes of insert backside wear in total knee arthroplasty. Clin Orthop Relat Res. 2002;(404): 232-246. doi: 10.1097/00003086-200211000-00037.

[42]

https://doi.org/10.1007/s00167-015-3630-8.

[43]

Norgren B., Dalén T., Nilsson K.G. All-poly tibial component better than metal-backed: a randomized RSA study. Knee. 2004;11(3):189-196. doi: 10.1016/S0968-0160(03)00071-1.

[44]

Wasielewski R.C., Parks N., Williams I., Surprenant H., Collier J.P., Engh G. Tibial insert undersurface as a contributing source of polyethylene wear debris. Clin Orthop Relat Res. 1997;(345):53–59. https://doi.org/10.1055/s-0034-1398375.

[45]

Kumar V., Hasan O., Umer M., Baloch N. Cemented all-poly tibia in resource constrained country, affordable and cost-effective care. Is it applicable at this era? Review article. Ann Med Surg (Lond). 2019;47:36-40. doi: 10.1016/j.amsu.2019.09.010.

[46]

Wasielewski R.C. The causes of insert backside wear in total knee arthroplasty. Clin Orthop Relat Res. 2002 Nov:(404):232-46. https://doi.org/10.1097/00003086-200211000-00037.

[47]

Apostolopoulos V., Nachtnebl L., Mahdal M., Pazourek L., Boháč P., Janíček P., et al. Clinical outcomes and survival comparison between NexGen all-poly and its metal-backed equivalent in total knee arthroplasty. Int Orthop. 2023;47(9):2207-2213. doi: 10.1007/s00264-023-05772-3.

[48]

Norgren B., Dalén T., Nilsson K.G. All-poly tibial component better than metal-backed: a randomized RSA study. Knee. 2004 Jun;11(3):189-96. https://doi.org/10.1016/S0968-0160(03)00071-1.

[49]

Gudnason A., Hailer N.P., W-Dahl A., Sundberg M., Robertsson O. All-Polyethylene Versus Metal-Backed Tibial Components-An Analysis of 27,733 Cruciate-Retaining Total Knee Replacements from the Swedish Knee Arthroplasty Register. J Bone Joint Surg Am. 2014;96(12):994-999. doi: 10.2106/JBJS.M.00373.

[50]

Kumar V., Hasan O., Umer M., Baloch N. Cemented all-poly tibia in resource constrained country, affordable and cost-effective care. Is it applicable at this era? Review article. Ann Med Surg (Lond). 2019 Sep 27:47:36-40. https://doi.org/10.1016/j.amsu.2019.09.010.

[51]

Apostolopoulos V., Tomáš T., Boháč P., Marcián P., Mahdal M., Valoušek T., et al. Biomechanical analysis of all-polyethylene total knee arthroplasty on periprosthetic tibia using the finite element method. Comput Methods Programs Biomed. 2022;220:106834. doi: 10.1016/j.cmpb.2022.106834.

[52]

Apostolopoulos V., Nachtnebl L., Mahdal M., Pazourek L., Boháč P., Janíček P., Tomáš T. Clinical outcomes and survival comparison between NexGen all-poly and its metal-backed equivalent in total knee arthroplasty. Int Orthop. 2023 Sep; 47 (9): 2207-2213. https://doi.org/10.1007/s00264-023-05772-3.

[53]

Lewis P.L., Robertsson O., Graves S.E., Paxton E.W., Prentice H.A., W-Dahl A. Variation and trends in reasons for knee replacement revision: a multi-registry study of revision burden. Acta Orthop. 2021;92(2):182-188. doi: 10.1080/17453674.2020.1853340.

[54]

Gudnason A., Hailer N.P., W-Dahl A., Sundberg M., Robertsson O. All-Polyethylene Versus Metal-Backed Tibial Components-An Analysis of 27,733 Cruciate-Retaining Total Knee Replacements from the Swedish Knee Arthroplasty Register. J Bone Joint Surg Am. 2014 Jun 18;96(12):994-999. https://doi.org/10.2106/JBJS.M.00373.

[55]

Тихилов Р.М., Корнилов Н.Н., Куляба Т.А., Филь А.С., Дроздова П.В. Принципы создания и функционирования регистров артропластики коленного сустава. Вестник военно-медицинской академии. 2014;1(45):220-226. Tikhilov R.M., Kornilov N.N., Kulyaba T.A., Fil A.S., Drozdova P.V. Principles of creation and functioning of knee arthroplasty register. Bulletin of the Russian Military Medical Academy. 2014;1(45):220-226. (In Russian).

[56]

Apostolopoulos V., Tomáš T., Boháč P., Marcián P., Mahdal M., Valoušek T., Janíček P., Nachtnebl L. Biomechanical analysis of all-polyethylene total knee arthroplasty on periprosthetic tibia using the finite element method. Comput Methods Programs Biomed. 2022 Jun: 220:106834. https://doi.org/10.1016/j.cmpb.2022.106834.

[57]

Jensen C.L., Petersen M.M., Jensen K.E., Therbo M., Schrøder H.M. Outcome of isolated tibial polyethylene insert exchange after uncemented total knee arthroplasty: 27 patients followed for 8-71 months. Acta Orthop. 2006;77(6):917-920. doi: 10.1080/17453670610013222.

[58]

Lewis P.L., Robertsson O., Graves S.E., Paxton E.W., Prentice H.A., W-Dahl A. Variation and trends in reasons for knee replacement revision: a multi-registry study of revision burden. Acta Orthop. 2021 Apr;92(2):182-188. https://doi.org/10.1080/17453674.2020.1853340.

[59]

Tikhilov R.M., Kornilov N.N., Kulyaba T.A., Fil A.S., Drozdova P.V. Principles of creation and functioning of knee arthroplasty register. Вестник военно-медицинской академии. 1(45) – 2014, 220-226 с.

[60]

Jensen C.L., Petersen M.M., Jensen K.E., Therbo M., Schroder H.M. Outcome of isolated tibial polyethylene insert exchange after uncemented total knee arthroplasty: 27 patients followed for 8-71 months. Acta Orthop. 2006 Dec;77(6):917-20. https://doi.org/10.1080/17453670610013222.

[61]

Australian orthopaedic association, National joint replacement registry, 2012, Ann/Report. – 2012. – P. 157.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (666KB)

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/