The influence of the TBX6 gene on the development of congenital spinal deformities in children
Sergei E. Khalchitsky , Sergei V. Vissarionov , Dmitry N. Kokushin , Vladislav P. Muldiiarov , Nikita O. Khusainov
Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2021, Vol. 9 ›› Issue (3) : 367 -376.
The influence of the TBX6 gene on the development of congenital spinal deformities in children
BACKGROUND: Congenital deformities of the spine are a group of serious congenital defects of the vertebrae, which can manifest themselves in the clinical picture as an isolated pathology of the axial musculoskeletal system, and are associated with congenital defects of internal organs and other systems. Recently, the TBX6 gene has been identified as the genetic cause of congenital scoliosis in about 11% of cases. This subtype of scoliosis is classified as TBX6-associated congenital scoliosis. The TBX6-associated congenital scoliosis phenotype is characterized by butterfly-shaped vertebrae and hemivertebrae in the lower thoracic and lumbar regions without pronounced malformations of the spinal cord.
AIM: Our aim is to study and evaluate data from foreign and domestic scientific publications devoted to the study of the candidate gene for congenital scoliosis TBX6.
MATERIALS AND METHODS: The following databases of scientific publications such as PubMed, Cochrane Library, Web of Science, SCOPUS, MEDLINE, e-Library, Cyberleninka were used to write this review. The inclusion criteria were systematic reviews, meta-analyses, multicenter studies, controlled cohort studies, uncontrolled cohort studies of patients with congenital spinal deformities. The exclusion criteria were clinical cases, observations, conference proceedings, congenital scoliosis in genetic syndromes, congenital scoliosis associated with defects of the nervous system.
RESULTS: In order to achieve this goal, 70 scientific publications were studied relating to the data analysis of the candidate gene for congenital scoliosis TBX6. Among 49 publications that were identified, 2 were domestics, and the rest were foreign publications. These studies provided information on the molecular analysis of genes that cause congenital spinal deformities in humans and animals.
CONCLUSIONS: An analysis of the published research work on this topic indicates the presence of a significant effect of mutations in the TBX6 gene, leading to the appearance of congenital scoliosis.
Advances in elucidating the genetic contribution to the development of congenital spinal deformities and the molecular etiology of clinical phenotypes may uncover the opportunities for further refinement of the classification of signs of congenital scoliosis in accordance with the underlying genetic etiology.
congenital spinal deformity / congenital scoliosis / TBX6 gene / children
| [1] |
Wang X, Yu Y, Yang N, Xia L. Incidence of intraspinal abnormalities in congenital scoliosis: a systematic review and meta-analysis. J Orthop Surg Res. 2020;15(1):485. DOI: 10.1186/s13018-020-02015-8 |
| [2] |
Wang X., Yu Y., Yang N., Xia L. Incidence of intraspinal abnormalities in congenital scoliosis: a systematic review and meta-analysis // J. Orthop. Surg. Res. 2020. Vol. 15. No. 1. P. 485. DOI: 10.1186/s13018-020-02015-8 |
| [3] |
Tikoo A, Kothari MK, Shah K, Nene A. Current concepts − congenital scoliosis. Open Orthop J. 2017;11:337−345. DOI: 10.2174/1874325001711010337 |
| [4] |
Tikoo A., Kothari M.K., Shah K., Nene A. Current concepts − congenital scoliosis // Open Orthop. J. 2017. Vol. 11. P. 337−345. DOI: 10.2174/1874325001711010337 |
| [5] |
Hensinger RN. Congenital scoliosis: etiology and associations. Spine (Phila Pa 1976). 2009;34(17):1745−1750. DOI: 10.1097/BRS.0b013e3181abf69e |
| [6] |
Hensinger R.N. Congenital scoliosis: etiology and associations // Spine (Phila. Pa. 1976). 2009. Vol. 34. No. 17. P. 1745−1750. DOI: 10.1097/BRS.0b013e3181abf69e |
| [7] |
Turnpenny PD, Alman B, Cornier AS, et al. Abnormal vertebral segmentation and the notch signaling pathway in man. Developmental Dynamics. 2007;236(6):1456–1474. DOI: 10.1002/ dvdy.21182 |
| [8] |
Turnpenny P.D., Alman B., Cornier A.S., et al. Abnormal vertebral segmentation and the notch signaling pathway in man // Developmental Dynamics. 2007. Vol. 236. No. 6. P. 1456–1474. DOI: 10.1002/ dvdy.21182 |
| [9] |
Cunin V. Early-onset scoliosis: current treatment. Orthopaedics & traumatology, surgery & research: OTSR. 2015;101,1(Suppl):S109−118. DOI: 10.1016/j.otsr.2014.06.032 |
| [10] |
Cunin V. Early-onset scoliosis: current treatment // Orthop. Traum. Surg. Res. 2015. Vol. 101. Suppl. P. S109−118. DOI: 10.1016/j.otsr.2014.06.032 |
| [11] |
Vissarionov SV, Kokushin DN, Belyanchikov SM, Efremov AM. Surgical treatment of children with congenital deformity of the upper thoracic spine. Hirurgiâ pozvonočnika (Spine Surgery). 2011;(2):35−40. (In Russ.). DOI: 10.14531/ss2011.2.35-40 |
| [12] |
Виссарионов С.В., Кокушин Д.Н., Белянчиков С.М. Хирургическое лечение детей с врожденной деформацией верхнегрудного отдела позвоночника // Хирургия позвоночника. 2011. № 2. С. 35−40. DOI: 10.14531/ss2011.2.35-40 |
| [13] |
Vissarionov SV, Kartavenko KA, Kokushin DN. The natural course of congenital spinal deformity in children with isolated vertebral body malformation in the lumbar spine. Hirurgiâ pozvonočnika (Spine Surgery). 2018;15(1):6−17. DOI: 10.14531/ss2018.1.6-17 |
| [14] |
Виссарионов С.В., Картавенко К.А., Кокушин Д.Н. Естественное течение врожденной деформации позвоночника у детей с изолированным нарушением формирования позвонка в поясничном отделе // Хирургия позвоночника. 2018. Т. 15. № 1. С. 6−17. DOI: 10.14531/ss2018.1.6-17 |
| [15] |
Pahys JM, Guille JT. What’s New in Congenital Scoliosis? J Pediatr Orthop. 2018;38(3):e172−e179. DOI: 10.1097/bpo.0000000000000922 |
| [16] |
Pahys J.M., Guille J.T. What’s new in congenital scoliosis? // J. Pediatr. Orthop. 2018. Vol. 38. No. 3. P. e172−e179. DOI: 10.1097/bpo.0000000000000922 |
| [17] |
Giampietro PF, Raggio CL, Blank RD, et al. Clinical, genetic and environmental factors associated with congenital vertebral malformations. Mol Syndromol. 2013;4(1-2):94−105. DOI: 10.1159/000345329 |
| [18] |
Giampietro P.F., Raggio C.L., Blank R.D., et al. Clinical, genetic and environmental factors associated with congenital vertebral malformations // Mol. Syndromol. 2013. Vol. 4. No. 1−2. P. 94−105. DOI: 10.1159/000345329 |
| [19] |
Takeda K, Kou I, Mizumoto S, et al. Screening of known disease genes in congenital scoliosis. Mol Genet Genomic Med. 2018;6(6):966−974. DOI: 10.1002/mgg3.466 |
| [20] |
Takeda K., Kou I., Mizumoto S., et al. Screening of known disease genes in congenital scoliosis // Mol. Genet. Genomic. Med. 2018. Vol. 6. No. 6. P. 966−974. DOI: 10.1002/mgg3.466 |
| [21] |
Giampietro PF, Raggio CL, Reynolds CE, et al. An analysis of PAX1 in the development of vertebral malformations. Clin Genet. 2005;68(5):448−453. DOI: 10.1111/j.1399-0004.2005.00520.x |
| [22] |
Giampietro P.F., Raggio C.L., Reynolds C.E., et al. An analysis of PAX1 in the development of vertebral malformations // Clin. Genet. 2005. Vol. 68. No. 5. P. 448−453. DOI: 10.1111/j.1399-0004.2005.00520.x |
| [23] |
Bayrakli F, Guclu B, Yakicier C, et al. Mutation in MEOX1 gene causes a recessive Klippel-Feil syndrome subtype. BMC Genet. 2013;14:95. DOI: 10.1186/1471-2156-14-95 |
| [24] |
Bayrakli F., Guclu B., Yakicier C., et al. Mutation in MEOX1 gene causes a recessive Klippel-Feil syndrome subtype // BMC Genet. 2013. Vol. 14. P. 95. DOI: 10.1186/1471-2156-14-95 |
| [25] |
Dias AS, de Almeida I, Belmonte JM, et al. Somites without a clock. Science. 2014;343(6172):791−795. DOI: 10.1126/science.1247575 |
| [26] |
Dias A.S., de Almeida I., Belmonte J.M., et al. Somites without a clock // Science. 2014. Vol. 343. No. 6172. P. 791−795. DOI: 10.1126/science.1247575 |
| [27] |
Thomsen B, Horn P, Panitz F, et al. A missense mutation in the bovine SLC35A3 gene, encoding a UDP-N-acetylglucosamine transporter, causes complex vertebral malformation. Genome Res. 2006;16(1):97−105. DOI: 10.1101/gr.3690506 |
| [28] |
Thomsen B., Horn P., Panitz F., et al. A missense mutation in the bovine SLC35A3 gene, encoding a UDP-N-acetylglucosamine transporter, causes complex vertebral malformation // Genome Res. 2006. Vol. 16. No. 1. P. 97−105. DOI: 10.1101/gr.3690506 |
| [29] |
Turnpenny PD, Sloman M, Dunwoodie S. Spondylocostal Dysostosis, Autosomal Recessive. GeneReviews®. Seattle; 2009. |
| [30] |
Turnpenny P.D., Sloman M., Dunwoodie S. Spondylocostal dysostosis, autosomal recessive // GeneReviews®. Seattle: University of Washington, 2009. |
| [31] |
Kazaryan I, Vissarionov SV. Prediction of the course of congenital spinal deformities in children. Hirurgiâ pozvonočnika (Spine Surgery). 2014;(3):38−44. (In Russ.). DOI: 10.14531/ss2014.3.38-44 |
| [32] |
Казарян И.В., Виссарионов С.В. Прогнозирование течения врожденных деформаций позвоночника у детей // Хирургия позвоночника. 2014. № 3. С. 38–44. DOI: 10.14531/ss2014.3.38-44 |
| [33] |
Bagnat M, Gray RS. Development of a straight vertebrate body axis. Development. 2020;147(21):dev175794. DOI: 10.1242/dev.175794 |
| [34] |
Bagnat M., Gray R.S. Development of a straight vertebrate body axis // Development. 2020. Vol. 147. No. 21. P. dev175794. DOI: 10.1242/dev.175794 |
| [35] |
Wopat S, Bagwell J, Sumigray KD, et al. Spine patterning is guided by segmentation of the notochord sheath. Cell Rep. 2018;22(8):2026−2038. DOI: 10.1016/j.celrep.2018.01.084 |
| [36] |
Wopat S., Bagwell J., Sumigray K.D., et al. Spine patterning is guided by segmentation of the notochord sheath // Cell. Rep. 2018. Vol. 22. No. 8. P. 2026−2038. DOI: 10.1016/j.celrep.2018.01.084 |
| [37] |
Dequéant ML, Pourquié O. Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet. 2008;9(5):370−382. DOI: 10.1038/nrg2320 |
| [38] |
Dequéant M.L., Pourquié O. Segmental patterning of the vertebrate embryonic axis // Nat. Rev. Genet. 2008. Vol. 9. No. 5. P. 370−382. DOI: 10.1038/nrg2320 |
| [39] |
Gamer LW, Wolfman NM, Celeste AJ. A novel BMP expressed in developing mouse limb, spinal cord, and tail bud is a potent mesoderm inducer in Xenopus embryos. Dev Biol. 1999;208(1):222–232. DOI: 10.1006/dbio.1998.9191 |
| [40] |
Gamer L.W., Wolfman N.M., Celeste A.J. A novel BMP expressed in developing mouse limb, spinal cord, and tail bud is a potent mesoderm inducer in Xenopus embryos // Dev. Biol. 1999. Vol. 208. No. 1. P. 222–232. DOI: 10.1006/dbio.1998.9191 |
| [41] |
Beck C. Development of the vertebrate tailbud. Wiley Interdisciplinary Reviews: Developmental Biology. 2015;4(1):33−44. DOI: 10.1002/wdev.163 |
| [42] |
Beck C. Development of the vertebrate tailbud // Wiley Interdisciplinary Reviews: Developmental Biology. 2015. Vol. 4. No. 1. P. 33−44. DOI: 10.1002/wdev.163 |
| [43] |
Christ B, Wilting J. From somites to vertebral column. Ann Anat. 1992;174:23–32. DOI: 10.1016/s0940-9602(11)80337-7 |
| [44] |
Christ B., Wilting J. From somites to vertebral column // Ann. Anat. 1992. Vol. 174. P. 23–32. DOI: 10.1016/s0940-9602(11)80337-7 |
| [45] |
Baker RE, Schnell S, Maini PK. A clock and wavefront mechanism for somite formation. Dev Biol. 2006;293(1):116−126. DOI: 10.1016/j.ydbio.2006.01.018 |
| [46] |
Baker R.E., Schnell S., Maini P.K. A clock and wavefront mechanism for somite formation // Dev. Biol. 2006. Vol. 293. No. 1. P. 116−126. DOI: 10.1016/j.ydbio.2006.01.018 |
| [47] |
Aulehla A, Herrmann BG. Segmentation in vertebrates: clock and gradient finally joined. Genes Dev. 2004;18(17):2060−2067. DOI: 10.1101/gad.1217404 |
| [48] |
Aulehla A., Herrmann B.G. Segmentation in vertebrates: clock and gradient finally joined // Genes. Dev. 2004. Vol. 18. No. 17. P. 2060−2067. DOI: 10.1101/gad.1217404 |
| [49] |
Dubrulle J, McGrew MJ, Pourquie O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell. 2001;106:219–232. DOI: 10.1016/s0092-8674(01)00437-8 |
| [50] |
Dubrulle J., McGrew M.J., Pourquie O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation // Cell. 2001. Vol. 106. P. 219–232. DOI: 10.1016/s0092-8674(01)00437-8 |
| [51] |
Takahashi Y, Koizumi K, Takagi A, et al. Mesp2 initiates somite segmentation through the Notch signalling pathway. Nat Genet. 2000;25(4):390−396. DOI: 10.1038/78062 |
| [52] |
Takahashi Y., Koizumi K., Takagi A., et al. Mesp2 initiates somite segmentation through the Notch signalling pathway // Nat. Genet. 2000. Vol. 25. No. 4. P. 390−396. DOI: 10.1038/78062 |
| [53] |
Oginuma M, Niwa Y, Chapman DL, Saga Y. Mesp2 and Tbx6 cooperatively create periodic patterns coupled with the clock machinery during mouse somitogenesis. Development. 2008;135(15):2555−2562. DOI: 10.1242/dev.019877 |
| [54] |
Oginuma M., Niwa Y., Chapman D.L., Saga Y. Mesp2 and Tbx6 cooperatively create periodic patterns coupled with the clock machinery during mouse somitogenesis // Development. 2008. Vol. 135. No. 15. P. 2555−2562. DOI: 10.1242/dev.019877 |
| [55] |
Zhao W, Ajima R, Ninomiya Y, Saga Y. Segmental border is defined by Ripply2-mediated Tbx6 repression independent of Mesp2. Dev Biol. 2015;400(1):105−117. DOI: 10.1016/j.ydbio.2015.01.020 |
| [56] |
Zhao W., Ajima R., Ninomiya Y., Saga Y. Segmental border is defined by Ripply2-mediated Tbx6 repression independent of Mesp2 // Dev. Biol. 2015. Vol. 400. No. 1. P. 105−117. DOI: 10.1016/j.ydbio.2015.01.020 |
| [57] |
Chapman DL, Agulnik I, Hancock S, et al. Tbx6, a mouse T-Box gene implicated in paraxial mesoderm formation at gastrulation. Dev Biol. 1996;180(2):534−542. DOI: 10.1006/dbio.1996.0326 |
| [58] |
Chapman D.L., Agulnik I., Hancock S., et al. Tbx6, a mouse T-Box gene implicated in paraxial mesoderm formation at gastrulation // Dev. Biol. 1996. Vol. 180. No. 2. P. 534−542. DOI: 10.1006/dbio.1996.0326 |
| [59] |
Papapetrou C, Putt W, Fox M, et al. The human TBX6 gene: cloning and assignment to chromosome 16p11.2. Genomics. 1999;55:238–241. DOI: 10.1006/geno.1998.5646 |
| [60] |
Papapetrou C., Putt W., Fox M., et al. The human TBX6 gene: cloning and assignment to chromosome 16p11.2 // Genomics. 1999. Vol. 55. P. 238–241. DOI: 10.1006/geno.1998.5646 |
| [61] |
Chen W, Liu J, Yuan D, et al. Progress and perspective of TBX6 gene in congenital vertebral malformations. Oncotarget. 2016;7(35):57430−57441. DOI: 10.18632/oncotarget.10619 |
| [62] |
Chen W., Liu J., Yuan D., et al. Progress and perspective of TBX6 gene in congenital vertebral malformations // Oncotarget. 2016. Vol. 7. No. 35. P. 57430−57441. DOI: 10.18632/oncotarget.10619 |
| [63] |
Yang N, Wu N, Zhang L, et al. TBX6 compound inheritance leads to congenital vertebral malformations in humans and mice. Hum Mol Genet. 2019;28(4):539−547. DOI: 10.1093/hmg/ddy358 |
| [64] |
Yang N., Wu N., Zhang L., et al. TBX6 compound inheritance leads to congenital vertebral malformations in humans and mice // Hum. Mol. Genet. 2019. Vol. 28. No. 4. P. 539−547. DOI: 10.1093/hmg/ddy358 |
| [65] |
Ghebranious N, Blank RD, Raggio CL, et al. A missense T (Brachyury) mutation contributes to vertebral malformations. J Bone Miner Res. 2008;23(10):1576−1583. DOI: 10.1359/jbmr.080503 |
| [66] |
Ghebranious N., Blank R.D., Raggio C.L., et al. A missense T (Brachyury) mutation contributes to vertebral malformations // J. Bone Miner. Res. 2008. Vol. 23. No. 10. P. 1576−1583. DOI: 10.1359/jbmr.080503 |
| [67] |
White PH, Farkas DR, Chapman DL. Regulation of Tbx6 expression by Notch signaling. Genesis. 2005;42(2):61−70. DOI: 10.1002/gene.20124 |
| [68] |
White P.H., Farkas D.R., Chapman D.L. Regulation of Tbx6 expression by Notch signaling // Genesis. 2005. Vol. 42. No. 2. P. 61−70. DOI: 10.1002/gene.20124 |
| [69] |
Lefebvre M, Duffourd Y, Jouan T, et al. Autosomal recessive variations of TBX6, from congenital scoliosis to spondylocostal dysostosis. Clin Genet. 2017;91(6):908−912. DOI: 10.1111/cge.12918 |
| [70] |
Lefebvre M., Duffourd Y., Jouan T., et al. Autosomal recessive variations of TBX6, from congenital scoliosis to spondylocostal dysostosis // Clin. Genet. 2017. Vol. 91. No. 6. P. 908−912. DOI: 10.1111/cge.12918 |
| [71] |
Otomo N, Takeda K, Kawai S, et al. Bi-allelic loss of function variants of TBX6 causes a spectrum of malformation of spine and rib including congenital scoliosis and spondylocostal dysostosis. J Med Genet. 2019;56(9):622−628. DOI: 10.1136/jmedgenet-2018-105920 |
| [72] |
Otomo N., Takeda K., Kawai S., et al. Bi-allelic loss of function variants of TBX6 causes a spectrum of malformation of spine and rib including congenital scoliosis and spondylocostal dysostosis // J. Med. Genet. 2019. Vol. 56. No. 9. P. 622−628. DOI: 10.1136/jmedgenet-2018-105920 |
| [73] |
Sparrow DB, McInerney-Leo A, Gucev ZS, et al. Autosomal dominant spondylocostal dysostosis is caused by mutation in TBX6. Hum Mol Genet. 2013;22(8):1625–1631. DOI: 10.1093/hmg/ddt012 |
| [74] |
Sparrow D.B., McInerney-Leo A., Gucev Z.S., et al. Autosomal dominant spondylocostal dysostosis is caused by mutation in TBX6 // Hum. Mol. Genet. 2013. Vol. 22. No. 8. P. 1625–1631. DOI: 10.1093/hmg/ddt012 |
| [75] |
Fei Q, Wu Z, Wang H, et al. The association analysis of TBX6 polymorphism with susceptibility to congenital scoliosis in a Chinese Han population. Spine (Phila Pa 1976). 2010;35:983–988. DOI: 10.1097/brs.0b013e3181bc963c |
| [76] |
Fei Q., Wu Z., Wang H., et al. The association analysis of TBX6 polymorphism with susceptibility to congenital scoliosis in a Chinese Han population // Spine (Phila Pa 1976). 2010. Vol. 35. P. 983–988. DOI: 10.1097/brs.0b013e3181bc963c |
| [77] |
Takeda K, Kou I, Kawakami N, et al. Compound heterozygosity for null mutations and a common hypomorphic risk haplotype in TBX6 causes congenital scoliosis. Hum Mutat. 2017;38:317−323. DOI: 10.1002/humu.23168 |
| [78] |
Takeda K., Kou I., Kawakami N., et al. Compound heterozygosity for null mutations and a common hypomorphic risk haplotype in TBX6 causes congenital scoliosis // Hum. Mutat. 2017. Vol. 38. P. 317−323. DOI: 10.1002/humu.23168 |
| [79] |
Gridley T. The long and short of it: somite formation in mice. Dev Dyn. 2006;235(9):2330−2336. DOI: 10.1002/dvdy.20850 |
| [80] |
Gridley T. The long and short of it: somite formation in mice // Dev. Dyn. 2006. Vol. 235. No. 9. P. 2330−2336. DOI: 10.1002/dvdy.20850 |
| [81] |
Shimojima K, Inoue T, Fujii Y, et al. A familial 593-kb microdeletion of 16p11.2 associated with mental retardation and hemivertebrae. Eur J Med Genet. 2009;52:433–435. DOI: 10.1016/j.ejmg.2009.09.007 |
| [82] |
Shimojima K., Inoue T., Fujii Y., et al. A familial 593-kb microdeletion of 16p11.2 associated with mental retardation and hemivertebrae // Eur. J. Med. Genet. 2009. Vol. 52. P. 433–435. DOI: 10.1016/j.ejmg.2009.09.007 |
| [83] |
Wu X, Xu L, Li Y, et al. Submicroscopic aberrations of chromosome 16 in prenatal diagnosis. Mol Cytogenet. 2019;12:36. DOI: 10.1186/s13039-019-0448-y |
| [84] |
Wu X., Xu L., Li Y., et al. Submicroscopic aberrations of chromosome 16 in prenatal diagnosis // Mol. Cytogenet. 2019. Vol. 12. P. 36. DOI: 10.1186/s13039-019-0448-y |
| [85] |
Al-Kateb H, Khanna G, Filges I, et al. Scoliosis and vertebral anomalies: additional abnormal phenotypes associated with chromosome 16p11.2 rearrangement. Am J Med Genet A. 2014;164A:1118–1126. DOI: 10.1002/ajmg.a.36401 |
| [86] |
Al-Kateb H., Khanna G., Filges I., et al. Scoliosis and vertebral anomalies: additional abnormal phenotypes associated with chromosome 16p11.2 rearrangement // Am. J. Med. Genet. A. 2014. Vol. 164A. P. 1118–1126. DOI: 10.1002/ajmg.a.36401 |
| [87] |
Baschal EE, Swindle K, Justice CM, et al. Sequencing of the TBX6 gene in families with familial idiopathic scoliosis. Spine Deformity. 2015;3(4):288–296. DOI: 10.1016/j.jspd.2015.01.005 |
| [88] |
Baschal E.E., Swindle K., Justice C.M., et al. Sequencing of the TBX6 gene in families with familial idiopathic scoliosis // Spine Deformity. 2015. Vol. 3. No. 4. P. 288–296. DOI: 10.1016/j.jspd.2015.01.005 |
| [89] |
Wu N, Ming X, Xiao J, et al. TBX6 null variants and a common hypomorphic allele in congenitalscoliosis. N Engl J Med. 2015;372(4):341−350. DOI: 10.1056/nejmoa1406829 |
| [90] |
Wu N., Ming X., Xiao J., et al. TBX6 null variants and a common hypomorphic allele in congenitalscoliosis // N. Engl. J. Med. 2015. Vol. 372. No. 4. P. 341−350. DOI: 10.1056/nejmoa1406829 |
| [91] |
Liu J, Wu N. TBX6-associated congenital scoliosis (TACS) as a clinically distinguishable subtype of congenital scoliosis: further evidence supporting the compound inheritance and TBX6 gene dosage model. Genet Med. 2019;21(7):1548−1558. DOI: 10.1038/s41436-018-0377-x |
| [92] |
Liu J., Wu N. TBX6-associated congenital scoliosis (TACS) as a clinically distinguishable subtype of congenital scoliosis: further evidence supporting the compound inheritance and TBX6 gene dosage model // Genet. Med. 2019. Vol. 21. No. 7. P. 1548−1558. DOI: 10.1038/s41436-018-0377-x |
| [93] |
Chen W, Lin J, Wang L, et al. TBX6 missense variants expand the mutational spectrum in a non-Mendelian inheritance disease. Hum Mutat. 2020;41(1):182−195. DOI: 10.1002/humu.23907 |
| [94] |
Chen W., Lin J., Wang L., et al. TBX6 missense variants expand the mutational spectrum in a non-Mendelian inheritance disease // Hum. Mutat. 2020. Vol. 41. No. 1. P. 182−195. DOI: 10.1002/humu.23907 |
| [95] |
Yang Y, Zhao S, Zhang Y, et al. Mutational burden and potential oligogenic model of TBX6-mediated genes in congenital scoliosis. Mol Genet Genomic Med. 2020;8(10):e1453. DOI: 10.1002/mgg3.1453 |
| [96] |
Yang Y., Zhao S., Zhang Y., et al. Mutational burden and potential oligogenic model of TBX6-mediated genes in congenital scoliosis // Mol. Genet. Genomic. Med. 2020. Vol. 8. No. 10. P. e1453. DOI: 10.1002/mgg3.1453 |
| [97] |
Feng X, Cheung JPY, Je JSH, et al. Genetic variants of TBX6 and TBXT identified in patients with congenital scoliosis in Southern China. J Orthop Res. 2021;39(5):971−988. DOI: 10.1002/jor.24805 |
| [98] |
Feng X., Cheung J.P.Y., Je J.S.H., et al. Genetic variants of TBX6 and TBXT identified in patients with congenital scoliosis in Southern China // J. Orthop. Res. 2021. Vol. 39. No. 5. P. 971−988. DOI: 10.1002/jor.24805 |
Khalchitsky S.E., Vissarionov S.V., Kokushin D.N., Muldiiarov V.P., Khusainov N.O.
/
| 〈 |
|
〉 |