Surgical treatment of children with extensive bone defects (Literature review)
Anton S. Shabunin , Marat S. Asadulaev , Sergei V. Vissarionov , Andrej M. Fedyuk , Timofey S. Rybinskikh , Aleksandr Y. Makarov , Daniil A. Pushkarev , Marina V. Sogoyan , Ekaterina N. Maevskaia , Natalya B. Fomina
Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2021, Vol. 9 ›› Issue (3) : 353 -366.
Surgical treatment of children with extensive bone defects (Literature review)
BACKGROUND: Reconstruction of extensive defects to bone tissue is one of the important problems of orthopedics and traumatology. Especially in acuteis, the problem is associated with the restoration of bone tissue in conditions of its deficiency in pediatric patients.
AIM: The aim of the study is to analyze modern methods of surgical treatment in children with extensive bone tissue injuries based on the published literature.
MATERIALS AND METHODS: Our report presents a review of the literature of methods of surgical treatment of extensive bone defects. The literature search was carried out in several databases such as PubMed, ScienceDirect, E-library, GoogleScholar for the period from 2005 to 2020, using the keywords given below. As a result of the search, 105 foreign and 37 domestic sources were found. After exclusion, 56 articles were analyzed, all presented works were published in the last 15 years.
RESULTS: The gold standard for replacing bone defects is still the use of autografts, including the use of technologies on a vascular pedicle. Various types of xenografts and allografts of bone tissue are increasingly being replaced by various kinds of synthetic implants.
CONCLUSIONS: To date, there is no single generally accepted standard for the surgical treatment of extensive bone defects. The option of surgical treatment of extensive bone tissue defects using tissue-engineered bone implants with axial blood supply seems to be extremely interesting and promising.
extensive bone defects / pediatric traumatology / bone autografts / bone grafting in children / allograft / orthopedics / traumatology
| [1] |
Bogosyan AB, Musihina IV, Tenilin NA, et al. Surgical treatment of children with locomotor apparatus pathology. Meditsinskii al’manakh. 2010;(2):201–204. |
| [2] |
Богосьян А.Б., Мусихина И.В., Тенилин Н.А., и др. Хирургическое лечение детей с патологией опорно-двигательного аппарата // Медицинский альманах. 2010. № 2. С. 201–204. |
| [3] |
Bazarov NI, Narzuloev VA, Usmonov HS, Kurbanov DM. Some aspects of bone autotransplantation during osteoneoplasms and tumourliked processes. Vestnik Avitsenny. 2009;(41). DOI: 10.25005/2074-0581-2009-11-4-34-40 |
| [4] |
Базаров Н.И., Нарзулоев В.А., Усмонов Х.С., Курбанов Д.М. Некоторые аспекты костной аутотрансплантации при костных новообразованиях и опухолеподобных процессах // Вестник Авиценны. 2009. № 4. DOI: 10.25005/2074-0581-2009-11-4-34-40 |
| [5] |
Roddy E, DeBaun MR, Daoud-Gray A, et al. Treatment of critical-sized bone defects: clinical and tissue engineering perspectives. Eur J Orthop Surg Traumatol. 2018;28(3):351–362. DOI: 10.1007/s00590-017-2063-0 |
| [6] |
Roddy E., DeBaun M.R., Daoud-Gray A., et al. Treatment of critical-sized bone defects: clinical and tissue engineering perspectives // Eur. J. Orthop. Surg. Traumatol. 2018. Vol. 28. No. 3. P. 351–362. DOI: 10.1007/s00590-017-2063-0 |
| [7] |
Ananeva ASh, Baraeva LM, Bykov IM, et al. Modeling of bone injuries in animal experiments. Innovatsionnaya meditsina Kubani. 2021;(1):47–55. DOI: 10.35401/2500-0268-2021-21-1-47-55 |
| [8] |
Ананьева А.Ш., Бараева Л.М., Быков И.М., и др. Моделирование повреждений костных структур в экспериментах на животных // Инновационная медицина Кубани. 2021. № 1. С. 47–55. DOI: 10.35401/2500-0268-2021-21-1-47-55 |
| [9] |
Khalifeh JM, Zohny Z, MacEwan M, et al. Electrical stimulation and bone healing: A review of current technology and clinical applications. IEEE Rev Biomed Eng. 2018;11:217–232. DOI: 10.1109/RBME.2018.2799189 |
| [10] |
Khalifeh J.M., Zohny Z., MacEwan M., et al. Electrical stimulation and bone healing: a review of current technology and clinical applications // IEEE Rev. Biomed. Eng. 2018. Vol. 11. P. 217–232. DOI: 10.1109/RBME.2018.2799189 |
| [11] |
Podgaiskii VN, Ladut’ko DJu, Mechkovskij SJu. Autotransplantatsiya vaskulyarizovannykh kostnykh loskutov kak metod lecheniya defektov kostei razlichnoi etiologii. Khirurgiya. Vostochnaya Evropa. 2012;(2)102–113. |
| [12] |
Подгайский В.Н., Ладутько Д.Ю., Мечковский С.Ю., и др. Аутотрансплантация васкуляризованных костных лоскутов как метод лечения дефектов костей различной этиологии // Хирургия. Восточная Европа. 2012. № 2. С. 102–113. |
| [13] |
Khan SN, Cammisa FP Jr, Sandhu HS, et al. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13(1):77–86. |
| [14] |
Khan S.N., Cammisa F.P. Jr, Sandhu H.S., et al. The biology of bone grafting // J. Am. Acad. Orthop. Surg. 2005. Vol. 13. No. 1. P. 77–86. |
| [15] |
Bracey DN, Cignetti NE, Jinnah AH, et al. Bone xenotransplantation: A review of the history, orthopedic clinical literature, and a single-center case series. Xenotransplantation. 2020;27(5):e12600. DOI: 10.1111/xen.12600 |
| [16] |
Bracey D.N., Cignetti N.E., Jinnah A.H., et al. Bone xenotransplantation: A review of the history, orthopedic clinical literature, and a single-center case series // Xenotransplantation. 2020. Vol. 27. No. 5. P. e12600. DOI: 10.1111/xen.12600 |
| [17] |
Kubiak CA, Etra JW, Brandacher G, et al. Prosthetic rehabilitation and vascularized composite allotransplantation following upper limb loss. Plast Reconstr Surg. 2019;143(6):1688–1701. DOI: 10.1097/PRS.0000000000005638 |
| [18] |
Kubiak C.A., Etra J.W., Brandacher G., et al. Prosthetic rehabilitation and vascularized composite allotransplantation following upper limb loss // Plast. Reconstr. Surg. 2019. Vol. 143. No. 6. P. 1688–1701. DOI: 10.1097/PRS.0000000000005638 |
| [19] |
Vissarionov SV, Asadulaev MS, Shabunin AS, et al. Experimental evaluation of the efficiency of chitosan matrix esunderconditions of modeling of bone defect in vivo (preliminary message). Ortopediya, travmatologiya i vosstanovitel’naya khirurgiya detskogo vozrasta. 2020;8(1):53–62. DOI: 10.17816/PTORS16480 |
| [20] |
Виссарионов С.В., Асадулаев М.С., Шабунин А.С., и др. Экспериментальная оценка эффективности хитозановых матриц в условиях моделирования костного дефекта in vivo (предварительное сообщение) // Ортопедия, травматология и восстановительная хирургия детского возраста. 2020. Т. 8. № 1. C. 53–62. DOI: 10.17816/PTORS16480 |
| [21] |
Frosch KH, Drengk A, Krause P, et al. Stem cell-coated titanium implants for the partial joint resurfacing of the knee. Biomaterials. 2006;27(12):2542–2549. DOI: 10.1016/j.biomaterials.2005.11.034 |
| [22] |
Frosch K.H., Drengk A., Krause P., et al. Stem cell-coated titanium implants for the partial joint resurfacing of the knee // Biomaterials. 2006. Vol. 27. No. 12. P. 2542–2549. DOI: 10.1016/j.biomaterials.2005.11.034 |
| [23] |
Clem WC, Chowdhury S, Catledge SA, et al. Mesenchymal stem cell interaction with ultra-smooth nanostructured diamond for wear-resistant orthopaedic implants. Biomaterials. 2008;29(24–25):3461–3468. DOI: 10.1016/j.biomaterials.2008.04.045 |
| [24] |
Clem W.C., Chowdhury S., Catledge S.A., et al. Mesenchymal stem cell interaction with ultra-smooth nanostructured diamond for wear-resistant orthopaedic implants // Biomaterials. 2008. Vol. 29. No. 24–25. P. 3461–3468. DOI: 10.1016/j.biomaterials.2008.04.045 |
| [25] |
Dong QS, Shang HT, Wu W, et al. Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: a better model. Mater Sci Eng C Mater Biol Appl. 2012;32(6):1536–1541. DOI: 10.1016/j.msec.2012.04.039 |
| [26] |
Dong Q.S., Shang H.T., Wu W., et al. Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: a better model // Mater. Sci. Eng. C. Mater. Biol. Appl. 2012. Vol. 32. No. 6. P. 1536–1541. DOI: 10.1016/j.msec.2012.04.039 |
| [27] |
Kneser U, Polykandriotis E, Ohnolz J, et al. Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng. 2006;12(7):1721–1731. DOI: 10.1089/ten.2006.12.1721 |
| [28] |
Kneser U., Polykandriotis E., Ohnolz J., et al. Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop // Tissue. Eng. 2006. Vol. 12. No. 7. P. 1721–1731. DOI: 10.1089/ten.2006.12.1721 |
| [29] |
Ma D, Ren L, Cao Z, et al. Prefabrication of axially vascularized bone by combining -tricalciumphosphate, arteriovenous loop, and cell sheet technique. Tissue Eng Regen Med. 2016;13(5):579–584. DOI: 10.1007/s13770-016-9095-0 |
| [30] |
Ma D., Ren L., Cao Z., et al. Prefabrication of axially vascularized bone by combining -tricalciumphosphate, arteriovenous loop, and cell sheet technique // Tissue. Eng. Regen. Med. 2016. Vol. 13. No. 5. P. 579–584. DOI: 10.1007/s13770-016-9095-0 |
| [31] |
Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques. J Bone Joint Surg Am. 2011;93(23):2227–2236. DOI: 10.2106/JBJS.J.01513 |
| [32] |
Myeroff C., Archdeacon M. Autogenous bone graft: donor sites and techniques // J. Bone. Joint. Surg. Am. 2011. Vol. 93. No. 23. P. 2227–2236. DOI: 10.2106/JBJS.J.01513 |
| [33] |
Leonova SN, Danilov DG, Rekhov AV. Primenenie kostnoi autotransplantatsii pri khronicheskom osteomielite. Acta Biomedica Scientifica. 2007:(5):125–126. |
| [34] |
Леонова С.Н., Данилов Д.Г., Рехов А.В. Применение костной аутотрансплантации при хроническом остеомиелите // Acta. Biomedica Scientifica. 2007. № 5. С. 125–126. |
| [35] |
Azi ML, Aprato A, Santi I, et al. Autologous bone graft in the treatment of post-traumatic bone defects: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2016;17(1):465. DOI: 10.1186/s12891-016-1312-4 |
| [36] |
Azi M.L., Aprato A., Santi I., et al. Autologous bone graft in the treatment of post-traumatic bone defects: a systematic review and meta-analysis // BMC Musculoskelet. Disord. 2016. Vol. 17. No. 1. P. 465. DOI: 10.1186/s12891-016-1312-4 |
| [37] |
Capanna R, Campanacci DA, Belot N, et al. A new reconstructive technique for intercalary defects of long bones: the association of massive allograft with vascularized fibular autograft. Long-term results and comparison with alternative techniques. Orthop Clin North Am. 2007;38(1):51-vi. DOI: 10.1016/j.ocl.2006.10.008 |
| [38] |
Capanna R., Campanacci D.A., Belot N., et al. A new reconstructive technique for intercalary defects of long bones: the association of massive allograft with vascularized fibular autograft. Long-term results and comparison with alternative techniques // Orthop. Clin. North Am. 2007. Vol. 38. No. 1. P. 51-vi. DOI: 10.1016/j.ocl.2006.10.008 |
| [39] |
Estrella EP, Wang EH. A comparison of vascularized free fibular flaps and nonvascularized fibular grafts for reconstruction of long bone defects after tumor resection. J Reconstr Microsurg. 2017;33(3):194–205. DOI: 10.1055/s-0036-1594299 |
| [40] |
Estrella E.P., Wang E.H. A comparison of vascularized free fibular flaps and nonvascularized fibular grafts for reconstruction of long bone defects after tumor resection // J. Reconstr. Microsurg. 2017. Vol. 33. No. 3. P. 194–205. DOI: 10.1055/s-0036-1594299 |
| [41] |
Izadpanah A, Moran SL. Pediatric microsurgery: A global overview. Clin Plast Surg. 2020;47(4):561–572. DOI: 10.1016/j.cps.2020.06.008 |
| [42] |
Izadpanah A., Moran S.L. Pediatric microsurgery: A global overview // Clin. Plast. Surg. 2020. Vol. 47. No. 4. P. 561–572. DOI: 10.1016/j.cps.2020.06.008 |
| [43] |
Yildirim S, Calikapan GT, Akoz T. Reconstructive microsurgery in pediatric population – a series of 25 patients. Microsurgery. 2008;28(2):99–107. DOI: 10.1002/micr.20458 |
| [44] |
Yildirim S., Calikapan G.T., Akoz T. Reconstructive microsurgery in pediatric population – a series of 25 patients // Microsurgery. 2008. Vol. 28. No. 2. P. 99–107. DOI: 10.1002/micr.20458 |
| [45] |
Aldekhayel S, Govshievich A, Neel OF, Luc M. Vascularized proximal fibula epiphyseal transfer for distal radius reconstruction in children: A systematic review. Microsurgery. 2016;36(8):705–711. DOI: 10.1002/micr.22521 |
| [46] |
Aldekhayel S., Govshievich A., Neel O.F., Luc M. Vascularized proximal fibula epiphyseal transfer for distal radius reconstruction in children: A systematic review // Microsurgery. 2016. Vol. 36. No. 8. P. 705–711. DOI: 10.1002/micr.22521 |
| [47] |
Boyer MI, Bowen CV. Microvascular transplantation of epiphyseal plates: studies utilizing allograft donor material. Orthop Clin North Am. 2007;38(1):103-vii. DOI: 10.1016/j.ocl.2006.10.002 |
| [48] |
Boyer M.I., Bowen C.V. Microvascular transplantation of epiphyseal plates: studies utilizing allograft donor material // Orthop. Clin. North Am. 2007. Vol. 38. No. 1. P. 103-vii. DOI: 10.1016/j.ocl.2006.10.002 |
| [49] |
McCullough MC, Arkader A, Ariani R, et al. Surgical outcomes, complications, and long-term functionality for free vascularized fibula grafts in the pediatric population: A 17-year experience and systematic review of the literature. J Reconstr Microsurg. 2020;36(5):386–396. DOI: 10.1055/s-0040-1702147 |
| [50] |
McCullough M.C., Arkader A., Ariani R., et al. Surgical outcomes, complications, and long-term functionality for free vascularized fibula grafts in the pediatric population: A 17-year experience and systematic review of the literature // J. Reconstr. Microsurg. 2020. Vol. 36. No. 5. P. 386–396. DOI: 10.1055/s-0040-1702147 |
| [51] |
Schwarz GS, Disa JJ, Mehrara BJ, et al. Reconstruction of oncologic tibial defects in children using vascularized fibula flaps. Plast Reconstr Surg. 2012;129(1):195–206. DOI: 10.1097/PRS.0b013e318230e463 |
| [52] |
Schwarz G.S., Disa J.J., Mehrara B.J., et al. Reconstruction of oncologic tibial defects in children using vascularized fibula flaps // Plast. Reconstr. Surg. 2012. Vol. 129. No. 1. P. 195–206. DOI: 10.1097/PRS.0b013e318230e463 |
| [53] |
Konttila E, Koljonen V, Kauhanen S, et al. Microvascular reconstruction in children-a report of 46 cases. J Trauma. 2010;68(3):548–552. DOI: 10.1097/TA.0b013e3181a5f42c |
| [54] |
Konttila E., Koljonen V., Kauhanen S., et al. Microvascular reconstruction in children-a report of 46 cases // J. Trauma. 2010. Vol. 68. No. 3. P. 548–552. DOI: 10.1097/TA.0b013e3181a5f42c |
| [55] |
Ozols D, Blums K, Krumins M, et al. Entire calcaneus reconstruction with pedicled composite fibular growth plate flap in a pediatric patient. Microsurgery. 2021;41(3):280–285. DOI: 10.1002/micr.30691 |
| [56] |
Ozols D., Blums K., Krumins M., et al. Entire calcaneus reconstruction with pedicled composite fibular growth plate flap in a pediatric patient // Microsurgery. 2021. Vol. 41. No. 3. P. 280–285. DOI: 10.1002/micr.30691 |
| [57] |
Taylor GI, Corlett RJ, Ashton MW. The evolution of free vascularized bone transfer: A 40-year experience. Plast Reconstr Surg. 2016;137(4):1292–1305. DOI: 10.1097/PRS.0000000000002040 |
| [58] |
Taylor G.I., Corlett R.J., Ashton M.W. The evolution of free vascularized bone transfer: A 40-Year experience // Plast. Reconstr. Surg. 2016. Vol. 137. No. 4. P. 1292–1305. DOI: 10.1097/PRS.0000000000002040 |
| [59] |
Allsopp BJ, Hunter-Smith DJ, Rozen WM. Vascularized versus nonvascularized bone grafts: What is the evidence? Clin Orthop Relat Res. 2016;474(5):1319–1327. DOI: 10.1007/s11999-016-4769-4 |
| [60] |
Allsopp B.J., Hunter-Smith D.J., Rozen W.M. Vascularized versus nonvascularized bone grafts: what Is the evidence? // Clin. Orthop. Relat. Res. 2016. Vol. 474. No. 5. P. 1319–1327. DOI: 10.1007/s11999-016-4769-4 |
| [61] |
Venkatesan J, Kim SK. Nano-hydroxyapatite composite biomaterials for bone tissue engineering – a review. J Biomed Nanotechnol. 2014;10(10):3124–3140. DOI: 10.1166/jbn.2014.1893 |
| [62] |
Venkatesan J., Kim S.K. Nano-hydroxyapatite composite biomaterials for bone tissue engineering – a review // J. Biomed. Nanotechnol. 2014. Vol. 10. No. 10. P. 3124–3140. DOI: 10.1166/jbn.2014.1893 |
| [63] |
Wen Y, Xun S, Haoye M, et al. 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Sci. 2017;5(9):1690–1698. DOI: 10.1039/c7bm00315c |
| [64] |
Wen Y., Xun S., Haoye M., et al. 3D printed porous ceramic scaffolds for bone tissue engineering: a review // Biomater. Sci. 2017. Vol. 5. No. 9. P. 1690–1698. DOI: 10.1039/c7bm00315c |
| [65] |
Lokmic Z, Stillaert F, Morrison WA, et al. An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct. FASEB J. 2007;21(2):511–522. DOI: 10.1096/fj.06-6614com |
| [66] |
Lokmic Z., Stillaert F., Morrison W.A., et al. An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct // FASEB J. 2007. Vol. 21. No. 2. P. 511–522. DOI: 10.1096/fj.06-6614com |
| [67] |
Santos MI, Reis RL. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci. 2010;10(1):12–27. DOI: 10.1002/mabi.200900107 |
| [68] |
Santos M.I., Reis R.L. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges // Macromol. Biosci. 2010. Vol. 10. No. 1. P. 12–27. DOI: 10.1002/mabi.200900107 |
| [69] |
Zheng L, Lv X, Zhang J, et al. Deep circumflex iliac artery perforator flap with iliac crest for oromandibular reconstruction. J Craniomaxillofac Surg. 2018;46(8):1263–1267. DOI: 10.1016/j.jcms.2018.04.021 |
| [70] |
Zheng L., Lv X., Zhang J., et al. Deep circumflex iliac artery perforator flap with iliac crest for oromandibular reconstruction // J. Craniomaxillofac. Surg. 2018. Vol. 46. No. 8. P. 1263–1267. DOI: 10.1016/j.jcms.2018.04.021 |
| [71] |
Schreiber M, Dragu A. Free temporal fascia flap to cover soft tissue defects of the foot: a case report. GMS Interdiscip Plast Reconstr Surg DGPW. 2015;4:Doc01. DOI: 10.3205/iprs000060 |
| [72] |
Schreiber M., Dragu A. Free temporal fascia flap to cover soft tissue defects of the foot: a case report // GMS Interdiscip. Plast. Reconstr. Surg DGPW. 2015. Vol. 4. P. Doc01. DOI: 10.3205/iprs000060 |
| [73] |
Polykandriotis E, Arkudas A, Beier JP, et al. Intrinsic axial vascularization of an osteoconductive bone matrix by means of an arteriovenous vascular bundle. Plast Reconstr Surg. 2007;120(4):855–868. DOI: 10.1097/01.prs.0000277664.89467.14 |
| [74] |
Polykandriotis E., Arkudas A., Beier J.P., et al. Intrinsic axial vascularization of an osteoconductive bone matrix by means of an arteriovenous vascular bundle // Plast. Reconstr. Surg. 2007. Vol. 120. No. 4. P. 855–868. DOI: 10.1097/01.prs.0000277664.89467.14 |
| [75] |
Weigand A, Beier JP, Hess A, et al. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization. Tissue Eng Part A. 2015;21(9–10):1680–1694. DOI: 10.1089/ten.TEA.2014.0568 |
| [76] |
Weigand A., Beier J.P., Hess A., et al. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization // Tissue. Eng. Part. A. 2015. Vol. 21. No. 9–10. P. 1680–1694. DOI: 10.1089/ten.TEA.2014.0568 |
| [77] |
Tanaka Y, Sung KC, Tsutsumi A, et al. Tissue engineering skin flaps: which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation? Plast Reconstr Surg. 2003;112(6):1636–1644. DOI: 10.1097/01.PRS.0000086140.49022.AB |
| [78] |
Tanaka Y., Sung K.C., Tsutsumi A., et al. Tissue engineering skin flaps: which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation? // Plast. Reconstr. Surg. 2003. Vol. 112. No. 6. P. 1636–1644. DOI: 10.1097/01.PRS.0000086140.49022.AB |
| [79] |
Yuan Q, Arkudas A, Horch RE, et al. Vascularization of the arteriovenous loop in a rat isolation chamber model-quantification of hypoxia and evaluation of its effects. Tissue Eng Part A. 2018;24(9–10):719–728. DOI: 10.1089/ten.TEA.2017.0262 |
| [80] |
Yuan Q., Arkudas A., Horch R.E., et al. Vascularization of the arteriovenous loop in a rat isolation chamber model-quantification of hypoxia and evaluation of its effects // Tissue. Eng. Part A. 2018. Vol. 24. No. 9–10. P. 719–728. DOI: 10.1089/ten.TEA.2017.0262 |
| [81] |
Schmidt VJ, Hilgert JG, Covi JM, et al. High flow conditions increase connexin 43 expression in a rat arteriovenous and angioinductive loop model. PLoS One. 2013;8(11):e78782. DOI: 10.1371/journal.pone.0078782 |
| [82] |
Schmidt V.J., Hilgert J.G., Covi J.M., et al. High flow conditions increase connexin 43 expression in a rat arteriovenous and angioinductive loop model // PLoS One. 2013. Vol. 8. No. 11. P. e78782. DOI: 10.1371/journal.pone.0078782 |
| [83] |
Arkudas A, Tjiawi J, Bleiziffer O, et al. Fibrin gel-immobilized VEGF and bFGF efficiently stimulate angiogenesis in the AV loop model. Mol Med. 2007;13(9–10):480–487. DOI: 10.2119/2007-00057 |
| [84] |
Arkudas A., Tjiawi J., Bleiziffer O., et al. Fibrin gel-immobilized VEGF and bFGF efficiently stimulate angiogenesis in the AV loop model // Mol. Med. 2007. Vol. 13. No. 9–10. P. 480–487. DOI: 10.2119/2007-00057 |
| [85] |
Arkudas A, Beier JP, Heidner K, et al. Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts. Tissue Eng. 2007;13(7):1549–1560. DOI: 10.1089/ten.2006.0387 |
| [86] |
Arkudas A., Beier J.P., Heidner K., et al. Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts // Tissue. Eng. 2007. Vol. 13. No. 7. P. 1549–1560. DOI: 10.1089/ten.2006.0387 |
| [87] |
Beier JP, Horch RE, Hess A, et al. Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model. J Tissue Eng Regen Med. 2010;4(3):216–223. DOI: 10.1002/term.229 |
| [88] |
Beier J.P., Horch R.E., Hess A., et al. Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model // J. Tissue. Eng. Regen. Med. 2010. Vol. 4. No. 3. P. 216–223. DOI: 10.1002/term.229 |
| [89] |
Horch RE, Beier JP, Kneser U, Arkudas A. Successful human long-term application of in situ bone tissue engineering. J Cell Mol Med. 2014;18(7):1478–1485. DOI: 10.1111/jcmm.12296 |
| [90] |
Horch R.E., Beier J.P., Kneser U., Arkudas A. Successful human long-term application of in situ bone tissue engineering // J. Cell. Mol. Med. 2014. Vol. 18. No. 7. P. 1478–1485. DOI: 10.1111/jcmm.12296 |
| [91] |
Arkudas A, Lipp A, Buehrer G, et al. Pedicled transplantation of axially vascularized bone constructs in a critical size femoral defect. Tissue Eng Part A. 2018;24(5–6):479–492. DOI: 10.1089/ten.TEA.2017.0110 |
| [92] |
Arkudas A., Lipp A., Buehrer G., et al. Pedicled transplantation of axially vascularized bone constructs in a critical size femoral defect // Tissue. Eng. Part A. 2018. Vol. 24. No. 5–6. P. 479–492. DOI: 10.1089/ten.TEA.2017.0110 |
| [93] |
Buehrer G, Balzer A, Arnold I, et al. Combination of BMP2 and MSCs significantly increases bone formation in the rat arterio-venous loop model. Tissue Eng Part A. 2015;21(1–2):96–105. DOI: 10.1089/ten.TEA.2014.0028 |
| [94] |
Buehrer G., Balzer A., Arnold I., et al. Combination of BMP2 and MSCs significantly increases bone formation in the rat arterio-venous loop model // Tissue. Eng. Part A. 2015. Vol. 21. No. 1–2. P. 96–105. DOI: 10.1089/ten.TEA.2014.0028 |
| [95] |
Eweida AM, Nabawi AS, Abouarab M, et al. Enhancing mandibular bone regeneration and perfusion via axial vascularization of scaffolds. Clin Oral Investig. 2014;18(6):1671–1678. DOI: 10.1007/s00784-013-1143-8 |
| [96] |
Eweida A.M., Nabawi A.S., Abouarab M., et al. Enhancing mandibular bone regeneration and perfusion via axial vascularization of scaffolds // Clin. OralInvestig. 2014. Vol. 18. No. 6. P. 1671–1678. DOI: 10.1007/s00784-013-1143-8 |
| [97] |
Kim HY, Lee JH, Lee HAR, et al. Sustained release of BMP-2 from porous particles with leaf-stacked sructure for bone regeneration. ACS Appl Mater Interfaces. 2018;10(25):21091–21102. DOI: 10.1021/acsami.8b02141 |
| [98] |
Kim H.Y., Lee J.H., Lee H.A.R., et al. Sustained release of BMP-2 from porous particles with leaf-stacked structure for bone regeneration // ACS Appl. Mater. Interfaces. 2018. Vol. 10. No. 25. P. 21091–21102. DOI: 10.1021/acsami.8b02141 |
| [99] |
Boos AM, Loew JS, Weigand A, et al. Engineering axially vascularized bone in the sheep arteriovenous-loop model. J Tissue Eng Regen Med. 2013;7(8):654–664. DOI: 10.1002/term.1457 |
| [100] |
Boos A.M., Loew J.S., Weigand A., et al. Engineering axially vascularized bone in the sheep arteriovenous-loop model // J. Tissue. Eng. Regen. Med. 2013. Vol. 7. No. 8. P. 654–664. DOI: 10.1002/term.1457 |
| [101] |
Jones AL, Bucholz RW, Bosse MJ, et al. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized, controlled trial. J Bone Joint Surg Am. 2006;88(7):1431–1441. DOI: 10.2106/JBJS.E.00381 |
| [102] |
Jones A.L., Bucholz R.W., Bosse M.J., et al. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized, controlled trial // J. Bone Joint Surg. Am. 2006. Vol. 88. No. 7. P. 1431–1441. DOI: 10.2106/JBJS.E.00381 |
| [103] |
Hokugo A, Sawada Y, Sugimoto K, et al. Preparation of prefabricated vascularized bone graft with neoangiogenesis by combination of autologous tissue and biodegradable materials. Int J Oral Maxillofac Surg. 2006;35(11):1034–1040. DOI: 10.1016/j.ijom.2006.06.003 |
| [104] |
Hokugo A., Sawada Y., Sugimoto K., et al. Preparation of prefabricated vascularized bone graft with neoangiogenesis by combination of autologous tissue and biodegradable materials // Int. J. Oral. Maxillofac. Surg. 2006. Vol. 35. No. 11. P. 1034–1040. DOI: 10.1016/j.ijom.2006.06.003 |
| [105] |
Eweida A, Fathi I, Eltawila AM, et al. Pattern of bone generation after irradiation in vascularized tissue engineered constructs. J Reconstr Microsurg. 2018;34(2):130–137. DOI: 10.1055/s-0037-1607322 |
| [106] |
Eweida A., Fathi I., Eltawila A.M., et al. Pattern of bone generation after irradiation in vascularized tissue engineered constructs // J. Reconstr. Microsurg. 2018. Vol. 34. No. 2. P. 130–137. DOI: 10.1055/s-0037-1607322 |
| [107] |
Polykandriotis E, Drakotos D, Arkudas A, et al. Factors influencing successful outcome in the arteriovenous loop model: a retrospective study of 612 loop operations. J Reconstr Microsurg. 2011;27(1):11–18. DOI: 10.1055/s-0030-1267385 |
| [108] |
Polykandriotis E., Drakotos D., Arkudas A., et al. Factors influencing successful outcome in the arteriovenous loop model: a retrospective study of 612 loop operations // J. Reconstr. Microsurg. 2011. Vol. 27. No. 1. P. 11–18. DOI: 10.1055/s-0030-1267385 |
| [109] |
Weigand A, Boos AM, Ringwald J, et al. New aspects on efficient anticoagulation and antiplatelet strategies in sheep. BMC Vet Res. 2013;9:192. DOI: 10.1186/1746-6148-9-192 |
| [110] |
Weigand A., Boos A.M., Ringwald J., et al. New aspects on efficient anticoagulation and antiplatelet strategies in sheep // BMC Vet. Res. 2013. Vol. 9. P. 192. DOI: 10.1186/1746-6148-9-192 |
| [111] |
Dong QS, Lin C, Shang HT, et al. Modified approach to construct a vascularized coral bone in rabbit using an arteriovenous loop. J Reconstr Microsurg. 2010;26(2):95–102. DOI: 10.1055/s-0029-1243293 |
| [112] |
Dong Q.S., Lin C., Shang H.T., et al. Modified approach to construct a vascularized coral bone in rabbit using an arteriovenous loop // J. Reconstr. Microsurg. 2010. Vol. 26. No. 2. P. 95–102. DOI: 10.1055/s-0029-1243293 |
Shabunin A.S., Asadulaev M.S., Vissarionov S.V., Fedyuk A.M., Rybinskikh T.S., Makarov A.Y., Pushkarev D.A., Sogoyan M.V., Maevskaia E.N., Fomina N.B.
/
| 〈 |
|
〉 |