Innervation of bones. Sensory innervation. Part I: a literature review
Alina M. Khodorovskaya , Olga E. Agranovich , Margarita V. Savina , Yuri E. Garkavenko , Evgeny V. Melchenko , Yana A. Filin , Konstantin E. Gorelik
Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2024, Vol. 12 ›› Issue (4) : 511 -522.
Innervation of bones. Sensory innervation. Part I: a literature review
BACKGROUND: Bone remodeling is a complex multifactorial process regulated by endocrine, paracrine, and mechanical factors. Nearly two decades ago, research showed that the nervous system is also involved in regulating bone remodeling. However, there is a very limited number of Russian publications on bone innervation mechanisms.
AIM: The aim of this paper was to review publications that address the role of sensory innervation in regulation of bone metabolism and some pathophysiology of bone pain.
MATERIALS AND METHODS: Data were searched in English and Russian in PubMed, Google Scholar, Cochrane Library, Crossref, eLibrary databases. Information was analyzed and synthesized for the purposes of this paper. Most studies in this review were published within the last 20 years.
RESULTS: All structural parts of the bone are innervated by sensory nerve fibers that are receptive to nociceptive information. The type of bone pain depends on both the location and the nature of the disease process. Pain signals from the bones to the central nervous system are transmitted by A-delta and C-fibers, each with its own conduction velocity, neurotransmitters, receptor characteristics, and functions. In addition, sensory nerves regulate bone homeostasis by expressing calcitonin gene-related peptide and substance P as their major neurotransmitters. Sensory nerves play a key role in development of primary and secondary ossification centers during endochondral and intramembranous ossification. Some studies show that nerve fibers are present in articular cartilage at some point in time.
CONCLUSIONS: Sensory fibers are an important link in the nervous regulation of bone and cartilage metabolism. Impaired sensory innervation leads to impaired bone remodeling and slows endochondral ossification and, consequently, bone growth and development. This should be considered, especially in patients with early onset bone innervation disorders. To prescribe the correct treatment, it is important to understand pathophysiology of bone pain.
bone innervation / sensory innervation of bone / endochondral ossification / pathophysiology of bone pain
| [1] |
Kumar A, Brockes JP. Nerve dependence in tissue, organ, and appendage regeneration. Trends Neurosci. 2012;35(11):691–699. doi: 10.1016/j.tins.2012.08.003 |
| [2] |
Kumar A., Brockes J.P. Nerve dependence in tissue, organ, and appendage regeneration // Trends Neurosci. 2012. Vol. 35, N 11. P. 691–699. doi: 10.1016/j.tins.2012.08.003 |
| [3] |
Uygur A, Lee RT. Mechanisms of cardiac regeneration. Dev Cell. 2016;36(4):362–374. doi: 10.1016/j.devcel.2016.01.018 |
| [4] |
Uygur A., Lee R.T. Mechanisms of cardiac regeneration // Dev Cell. 2016. Vol. 36, N 4. P. 362–374. doi: 10.1016/j.devcel.2016.01.018 |
| [5] |
Garcés GL, Santandreu ME. Longitudinal bone growth after sciatic denervation in rats. J Bone Joint Surg Br. 1988;70(2):315–318. doi: 10.1302/0301-620X.70B2.3346314 |
| [6] |
Garcés G.L., Santandreu M.E. Longitudinal bone growth after sciatic denervation in rats // J Bone Joint Surg Br. 1988. Vol. 70, N 2. P. 315–318. doi: 10.1302/0301-620X.70B2.3346314 |
| [7] |
Madsen JE, Hukkanen M, Aune AK, et al. Fracture healing and callus innervation after peripheral nerve resection in rats. Clin Orthop Relat Res. 1998;(351):230–240. |
| [8] |
Madsen J.E., Hukkanen M., Aune A.K., et al. Fracture healing and callus innervation after peripheral nerve resection in rats // Clin Orthop Relat Res. 1998. N 351. P. 230–240. |
| [9] |
Heffner MA, Anderson MJ, Yeh GC, et al. Altered bone development in a mouse model of peripheral sensory nerve inactivation. J Musculoskelet Neuronal Interact. 2014. Vol. 14, N 1. P. 1–9. |
| [10] |
Heffner M.A., Anderson M.J., Yeh G.C., et al. Altered bone development in a mouse model of peripheral sensory nerve inactivation // J Musculoskelet Neuronal Interact. 2014. Vol. 14, N 1. P. 1–9. |
| [11] |
Santavirta S, Konttinen YT, Nordstrom D, et al. Immunologic studies of nonunited fractures. Acta Orthop Scand. 1992;63(6):579–586. |
| [12] |
Santavirta S., Konttinen Y.T., Nordstrom D., et al. Immunologic studies of nonunited fractures // Acta Orthop Scand. 1992. Vol. 63, N 6. P. 579–586. |
| [13] |
Nagano J, Tada K, Masatomi T, et al. Arthropathy of the wrist in leprosy – what changes are caused by long-standing peripheral nerve palsy? Arch Orthop Trauma Surg. 1989;108(4):210–217. doi: 10.1007/BF00936203 |
| [14] |
Nagano J., Tada K., Masatomi T., et al. Arthropathy of the wrist in leprosy – what changes are caused by long-standing peripheral nerve palsy? // Arch Orthop Trauma Surg. 1989. Vol. 108, N 4. P. 210–217. doi: 10.1007/BF00936203 |
| [15] |
Bae DS, Ferretti M, Waters PM. Upper extremity size differences in brachial plexus birth palsy. Hand (NY). 2008;3(4):297–303. doi: 10.1007/s11552-008-9103-5 |
| [16] |
Bae D.S., Ferretti M., Waters P.M. Upper extremity size differences in brachial plexus birth palsy // Hand (NY). 2008. Vol. 3, N 4. P. 297–303. doi: 10.1007/s11552-008-9103-5 |
| [17] |
Danisman M, Emet A, Kocyigit IA, et al. Examination of upper extremity length discrepancy in patients with obstetric brachial plexus paralysis. Children (Basel). 2023;10(5):876. doi: 10.3390/children10050876 |
| [18] |
Danisman M., Emet A., Kocyigit I.A., et al. Examination of upper extremity length discrepancy in patients with obstetric brachial plexus paralysis // Children (Basel). 2023. Vol. 10, N 5. P. 876. doi: 10.3390/children10050876 |
| [19] |
Frost HM. On our age-related bone loss: insights from a new paradigm. J Bone Miner Res. 1997;12(10):1539–1546. doi: 10.1359/jbmr.1997.12.10.1539 |
| [20] |
Frost H.M. On our age-related bone loss: insights from a new paradigm // J Bone Miner Res. 1997. Vol. 12, N 10. P. 1539–1546. doi: 10.1359/jbmr.1997.12.10.1539 |
| [21] |
Dimitri P, Rosen C. The central nervous system and bone metabolism: an evolving story. Calcif Tissue Int. 2017;100(5):476–485. doi: 10.1007/s00223-016-0179-6 |
| [22] |
Dimitri P., Rosen C. The central nervous system and bone metabolism: an evolving story // Calcif Tissue Int. 2017. Vol. 100, N 5. P. 476–485. doi: 10.1007/s00223-016-0179-6 |
| [23] |
Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100(2):197–207. doi: 10.1016/s0092-8674(00)81558-5 |
| [24] |
Ducy P., Amling M., Takeda S., et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass // Cell. 2000. Vol. 100, N 2. P. 197–207. doi: 10.1016/s0092-8674(00)81558-5 |
| [25] |
Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 1995;374(6505):425–432. doi: 10.1038/372425a0 |
| [26] |
Zhang Y., Proenca R., Maffei M., et al. Positional cloning of the mouse obese gene and its human homologue // Nature. 1995. Vol. 374, N 6505. P. 425–432 doi: 10.1038/372425a0 |
| [27] |
Takeda S, Elefteriou F, Levasseur R, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305–317. doi: 10.1016/s0092-8674(02)01049-8 |
| [28] |
Takeda S., Elefteriou F., Levasseur R., et al. Leptin regulates bone formation via the sympathetic nervous system // Cell. 2002. Vol. 111, N 3. P. 305–317. doi: 10.1016/s0092-8674(02)01049-8 |
| [29] |
Halaas JL, Gajiwala KS, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995;269(5223):543–546. doi: 10.1126/science.7624777 |
| [30] |
Halaas J.L., Gajiwala K.S., Maffei M., et al. Weight-reducing effects of the plasma protein encoded by the obese gene // Science. 1995. Vol. 269, N 5223. P. 543–546. doi: 10.1126/science.7624777 |
| [31] |
Thomas T, Gori F, Khosla S, et al. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology. 1999;1404:1630–1638. doi: 10.1210/endo.140.4.6637 |
| [32] |
Thomas T., Gori F., Khosla S., et al. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes // Endocrinology. 1999. Vol. 140, N 4. P. 1630–1638. doi: 10.1210/endo.140.4.6637 |
| [33] |
Cornish J, Callon KE, Bava U, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol. 2002;175(2):405–415. doi: 10.1677/joe.0.1750405 |
| [34] |
Cornish J., Callon K.E., Bava U., et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo // J Endocrinol. 2002. Vol. 175, N 2. P. 405–415. doi: 10.1677/joe.0.1750405 |
| [35] |
Holloway WR, Collier FM, Aitken CJ, et al. Leptin inhibits osteoclast generation. J Bone Miner Res. 2002;17(2):200–209. doi: 10.1359/jbmr.2002.17.2.200 |
| [36] |
Holloway W.R., Collier F.M., Aitken C.J., et al. Leptin inhibits osteoclast generation // J Bone Miner Res. 2002. Vol. 17, N 2. P. 200–209. doi: 10.1359/jbmr.2002.17.2.200 |
| [37] |
Brazill JM, Beeve AT, Craft CS, et al. Nerves in bone: evolving concepts in pain and anabolism. J Bone Miner Res. 2019;34(8):1393–1406. doi: 10.1002/jbmr.3822 |
| [38] |
Brazill J.M., Beeve A.T., Craft C.S., et al. Nerves in bone: evolving concepts in pain and anabolism // J Bone Miner Res. 2019. Vol. 34, N 8. P. 1393–1406. doi: 10.1002/jbmr.3822 |
| [39] |
Tomlinson RE, Christiansen BA, Giannone AA, et al. The role of nerves in skeletal development, adaptation, and aging. Front Endocrinol (Lausanne). 2020;11:646. doi: 10.3389/fendo.2020.00646 |
| [40] |
Tomlinson R.E., Christiansen B.A., Giannone A.A., et al. The role of nerves in skeletal development, adaptation, and aging // Front Endocrinol (Lausanne). 2020. Vol. 11. P. 646. doi: 10.3389/fendo.2020.00646 |
| [41] |
Sanders LJ. The Charcot foot: historical perspective 1827–2003. Diabetes Metab Res Rev. 2004;20(S1):S4–S8. doi: 10.1002/dmrr.451 |
| [42] |
Sanders L.J. The Charcot foot: historical perspective 1827–2003 // Diabetes Metab Res Rev. 2004. Vol. 20, N S1. P. S4–S8. doi: 10.1002/dmrr.451 |
| [43] |
Corbin KB, Hinsey JC. Influence of the nervous system on bone and joints. Anat Rec. 1939;75(3):307–317. doi: 10.1002/ar.1090750305 |
| [44] |
Corbin K.B., Hinsey J.C. Influence of the nervous system on bone and joints // Anat Rec. 1939. Vol. 75, N 3. P. 307–317. doi: 10.1002/ar.1090750305 |
| [45] |
Bajaj D, Allerton BM, Kirby JT, et al. Muscle volume is related to trabecular and cortical bone architecture in typically developing children. Bone. 2015;81:217–227. doi: 10.1016/j.bone.2015.07.014 |
| [46] |
Bajaj D., Allerton B.M., Kirby J.T., et al. Muscle volume is related to trabecular and cortical bone architecture in typically developing children // Bone. 2015. Vol. 81. P. 217–227. doi: 10.1016/j.bone.2015.07.014 |
| [47] |
Edmonds ME, Clarke MB, Newton S, et al. Increased uptake of bone radiopharmaceutical in diabetic neuropathy. Q J Med. 1985;57(3–4):843–855. doi: 10.1093/oxfordjournals.qjmed.a067929 |
| [48] |
Edmonds M.E., Clarke M.B., Newton S., et al. Increased uptake of bone radiopharmaceutical in diabetic neuropathy // Q J Med. 1985. Vol. 57, N 3–4. P. 843–855. doi: 10.1093/oxfordjournals.qjmed.a067929 |
| [49] |
Bjurholm A, Kreicbergs A, Brodin E, et al. Substance P- and CGRP-immunoreactive nerves in bone. Peptides. 1988;9(1):165–171. doi: 10.1016/0196-9781(88)90023-x |
| [50] |
Bjurholm A., Kreicbergs A., Brodin E., et al. Substance P- and CGRP-immunoreactive nerves in bone // Peptides. 1988. Vol. 9, N 1. P. 165–171. doi: 10.1016/0196-9781(88)90023-x |
| [51] |
Tomlinson RE, Li Z, Li Z, et al. NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. Proc Natl Acad Sci USA. 2017;114,(18):E3632–E3641. doi: 10.1073/pnas.1701054114 |
| [52] |
Tomlinson R.E., Li Z., Li Z., et al. NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice // Proc Natl Acad Sci USA. 2017. Vol. 114, N 18. P. E3632–E3641. doi: 10.1073/pnas.1701054114 |
| [53] |
Cornish J, Callon KE, Lin CQ, et al. Comparison of the effects of calcitonin gene-related peptide and amylin on osteoblasts. J Bone Miner Res. 1999;14(8):1302–1309. doi: 10.1359/jbmr.1999.14.8.1302 |
| [54] |
Cornish J., Callon K. E., Lin C. Q., et al. Comparison of the effects of calcitonin gene-related peptide and amylin on osteoblasts // J Bone Miner Res. 1999. Vol. 14, N 8. P. 1302–1309. doi: 10.1359/jbmr.1999.14.8.1302 |
| [55] |
Chen H, Hu B, Lv X, et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat Commun. 2019;10(1). doi: 10.1038/s41467-018-08097-7 |
| [56] |
Chen H., Hu B., Lv X., et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis // Nat Commun. 2019. Vol. 10, N 1. doi: 10.1038/s41467-018-08097-7 |
| [57] |
Mrak E, Guidobono F, Moro G, et al. Calcitonin gene-related peptide (CGRP) inhibits apoptosis in human osteoblasts by β-catenin stabilization. J Cell Physiol. 2010;225(3):701–708. doi: 10.1002/jcp.22266 |
| [58] |
Mrak E., Guidobono F., Moro G., et al. Calcitonin gene-related peptide (CGRP) inhibits apoptosis in human osteoblasts by β-catenin stabilization // J Cell Physiol. 2010. Vol. 225, N 3. P. 701–708. doi: 10.1002/jcp.22266 |
| [59] |
Elefteriou F, Ahn J, Takeda S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514–520. doi: 10.1038/nature03398 |
| [60] |
Elefteriou F., Ahn J., Takeda S., et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART // Nature. 2005. Vol. 434, N 7032. P. 514–520. doi: 10.1038/nature03398 |
| [61] |
Schinke T, Liese S, Priemel M, et al. Decreased bone formation and osteopenia in mice lacking alpha-calcitonin gene-related peptide. J Bone Miner Res. 2004;19(12):2049–2056. doi: 10.1359/JBMR.040915 |
| [62] |
Schinke T., Liese S., Priemel M., et al. Decreased bone formation and osteopenia in mice lacking alpha-calcitonin gene-related peptide // J Bone Miner Res. 2004. Vol. 19, N 12. P. 2049–2056. doi: 10.1359/JBMR.040915 |
| [63] |
Yang Y, Zhou J, Liang C, et al. Effects of highly selective sensory/motor nerve injury on bone metabolism and bone remodeling in rats. J Musculoskelet Neuronal Interact. 2022;22(4):524–535. |
| [64] |
Yang Y., Zhou J., Liang C., et al. Effects of highly selective sensory/motor nerve injury on bone metabolism and bone remodeling in rats // J Musculoskelet Neuronal Interact. 2022. Vol. 22, N 4. P. 524–535. |
| [65] |
Opolka A, Straub RH, Pasoldt A, et al. Substance P and norepinephrine modulate murine chondrocyte proliferation and apoptosis. Arthritis Rheum. 2012;64(3):729–739. doi: 10.1002/art.33449 |
| [66] |
Opolka A., Straub R.H., Pasoldt A., et al. Substance P and norepinephrine modulate murine chondrocyte proliferation and apoptosis // Arthritis Rheum. 2012. Vol. 64, N 3. P. 729–739. doi: 10.1002/art.33449 |
| [67] |
Hedberg A, Messner K, Persliden J, et al. Transient local presence of nerve fibers at onset of secondary ossification in the rat knee joint. Anat Embryol (Berl). 1995;192(3):247–255. doi: 10.1007/BF00184749 |
| [68] |
Hedberg A., Messner K., Persliden J., et al. Transient local presence of nerve fibers at onset of secondary ossification in the rat knee joint // Anat Embryol (Berl). 1995. Vol. 192, N 3. P. 247–255. doi: 10.1007/BF00184749 |
| [69] |
Schwab W, Funk RH. Innervation pattern of different cartilaginous tissues in the rat. Acta Anat. 1998;163(4):184–190. doi: 10.1159/000046497 |
| [70] |
Schwab W., Funk R.H. Innervation pattern of different cartilaginous tissues in the rat // Acta Anat. 1998. Vol. 163, N 4. P. 184–190. doi: 10.1159/000046497 |
| [71] |
Strange-Vognsen HH, Laursen H. Nerves in human epiphyseal uncalcified cartilage. J Pediatr Orthop B. 1997;6(1):56–58. doi: 10.1097/01202412-199701000-00012 |
| [72] |
Strange-Vognsen H.H., Laursen H. Nerves in human epiphyseal uncalcified cartilage // J Pediatr Orthop B. 1997. Vol. 6, N 1. P. 56–58. doi: 10.1097/01202412-199701000-00012 |
| [73] |
Szadek KM, Hoogland PV, Zuurmond WW, et al. Possible nociceptive structures in the sacroiliac joint cartilage: an immunohistochemical study. Clin Anat. 2010;23(2):192–198. doi: 10.1002/ca.20908 |
| [74] |
Szadek K.M., Hoogland P.V., Zuurmond W.W., et al. Possible nociceptive structures in the sacroiliac joint cartilage: an immunohistochemical study // Clin Anat. 2010. Vol. 23, N 2. P. 192–198. doi: 10.1002/ca.20908 |
| [75] |
Schwab W, Bilgiçyildirim A, Funk RH. Microtopography of the autonomic nerves in the rat knee: a fluorescence microscopic study. Anat Rec. 1997;247(1):109–118. doi: 10.1002/(SICI)1097-0185(199701)247:1<109::AID-AR13>3.0.CO;2-T |
| [76] |
Schwab W., Bilgiçyildirim A., Funk R.H. Microtopography of the autonomic nerves in the rat knee: a fluorescence microscopic study // Anat Rec. 1997. Vol. 247, N 1. P. 109–118. doi: 10.1002/(SICI)1097-0185(199701)247:1<109::AID-AR13>3.0.CO;2-T |
| [77] |
Wang Z, Liu B, Lin K, et al. The presence and degradation of nerve fibers in articular cartilage of neonatal rats. J Orthop Surg Res. 2022;17(1):331. doi: 10.1186/s13018-022-03221-2 |
| [78] |
Wang Z., Liu B., Lin K., et al. The presence and degradation of nerve fibers in articular cartilage of neonatal rats // J Orthop Surg Res. 2022. Vol. 17, N 1. P. 331. doi: 10.1186/s13018-022-03221-2 |
| [79] |
Sisask G, Bjurholm A, Ahmed M, et al. Ontogeny of sensory nerves in the developing skeleton. Anat Rec. 1995;243(2):234–240. doi: 10.1002/ar.1092430210 |
| [80] |
Sisask G., Bjurholm A., Ahmed M., et al. Ontogeny of sensory nerves in the developing skeleton // Anat Rec. 1995. Vol. 243, N 2. P. 234–240. doi: 10.1002/ar.1092430210 |
| [81] |
Calvo W, Haas RJ. Die histogenese des knochenmarks der ratte: nervale versorgung, knochenmarkstroma und ihre beziehung zur blutzellbildung. Z Zellforsch. 1969;95:377–395. doi: 10.1007/BF00995211 |
| [82] |
Calvo W., Haas R.J. Die histogenese des knochenmarks der ratte: nervale versorgung, knochenmarkstroma und ihre beziehung zur blutzellbildung // Z Zellforsch. 1969. Vol. 95. P. 377–395. doi: 10.1007/BF00995211 |
| [83] |
Nencini S, Ringuet M, Kim DH, et al. Mechanisms of nerve growth factor signaling in bone nociceptors and in an animal model of inflammatory bone pain. Mol Pain. 2017;13:1744806917697011. doi: 10.1177/1744806917697011 |
| [84] |
Nencini S., Ringuet M., Kim D.H., et al. Mechanisms of nerve growth factor signaling in bone nociceptors and in an animal model of inflammatory bone pain // Mol Pain. 2017. Vol. 13. ID: 1744806917697011. doi: 10.1177/1744806917697011 |
| [85] |
Testa G, Cattaneo A, Capsoni S. Understanding pain perception through genetic painlessness diseases: the role of NGF and proNGF. Pharmacol Res. 2021;169:105662. doi: 10.1016/j.phrs.2021.105662 |
| [86] |
Testa G., Cattaneo A., Capsoni S. Understanding pain perception through genetic painlessness diseases: the role of NGF and proNGF // Pharmacol Res. 2021. Vol. 169. ID: 105662. doi: 10.1016/j.phrs.2021.105662 |
| [87] |
Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci. 2006;361(1473):1545–1564. doi: 10.1098/rstb.2006.1894 |
| [88] |
Reichardt L.F. Neurotrophin-regulated signalling pathways // Philos Trans R Soc Lond B Biol Sci. 2006. Vol. 361, N 1473. P. 1545–1564. doi: 10.1098/rstb.2006.1894 |
| [89] |
Mukouyama YS, Shin D, Britsch S, et al. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell. 2002;109(6):693–705. doi: 10.1016/s0092-8674(02)00757-2 |
| [90] |
Mukouyama Y.S., Shin D., Britsch S., et al. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin // Cell. 2002. Vol. 109, N 6. P. 693–705. doi: 10.1016/s0092-8674(02)00757-2 |
| [91] |
Tower RJ, Li Z, Cheng YH, et al. Spatial transcriptomics reveals a role for sensory nerves in preserving cranial suture patency through modulation of BMP/TGF-β signaling. Proc Natl Acad Sci USA. 2021;118(42):e2103087118. doi: 10.1073/pnas.2103087118 |
| [92] |
Tower R.J., Li Z., Cheng Y.H., et al. Spatial transcriptomics reveals a role for sensory nerves in preserving cranial suture patency through modulation of BMP/TGF-β signaling // Proc Natl Acad Sci USA. 2021. Vol. 118, N 42. ID: e2103087118. doi: 10.1073/pnas.2103087118 |
| [93] |
Bonkowsky JL, Johnson J, Carey JC, et al. An infant with primary tooth loss and palmar hyperkeratosis: a novel mutation in the NTRK1 gene causing congenital insensitivity to pain with anhidrosis. Pediatrics. 2003;112(3):e237–e241. doi: 10.1542/peds.112.3.e237 |
| [94] |
Bonkowsky J.L., Johnson J., Carey J.C., et al. An infant with primary tooth loss and palmar hyperkeratosis: a novel mutation in the NTRK1 gene causing congenital insensitivity to pain with anhidrosis // Pediatrics. 2003. Vol. 112, N 3. P. e237–e241. doi: 10.1542/peds.112.3.e237 |
| [95] |
Frost CØ, Hansen RR, Heegaard AM. Bone pain: current and future treatments. Curr Opin Pharmacol. 2016;28:31–37. doi: 10.1016/j.coph.2016.02.007 |
| [96] |
Frost C.Ø., Hansen R.R., Heegaard A.M. Bone pain: current and future treatments // Curr Opin Pharmacol. 2016. Vol. 28. P. 31–37. doi: 10.1016/j.coph.2016.02.007 |
| [97] |
Oostinga D, Steverink JG, van Wijck AJM, et al. An understanding of bone pain: a narrative review. Bone. 2020;134:115272 doi: 10.1016/j.bone.2020.115272 |
| [98] |
Oostinga D., Steverink J.G., van Wijck A.J.M., et al. An understanding of bone pain: a narrative review // Bone. 2020. Vol. 134. ID: 115272 doi: 10.1016/j.bone.2020.115272 |
| [99] |
Mach DB, Rogers SD, Sabino MC, et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience. 2002;113(1):155–166. doi: 10.1016/s0306-4522(02)00165-3 |
| [100] |
Mach D.B., Rogers S.D., Sabino M.C., et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur // Neuroscience. 2002. Vol. 113, N 1. P. 155–166. doi: 10.1016/s0306-4522(02)00165-3 |
| [101] |
Ivanusic JJ. Size, neurochemistry, and segmental distribution of sensory neurons innervating the rat tibia. J Comp Neurol. 2009;517(3):276–283. doi: 10.1002/cne.22160 |
| [102] |
Ivanusic J.J. Size, neurochemistry, and segmental distribution of sensory neurons innervating the rat tibia // J Comp Neurol. 2009. Vol. 517, N 3. P. 276–283. doi: 10.1002/cne.22160 |
| [103] |
Jimenez-Andrade JM, Mantyh WG, Bloom AP, et al. A phenotypically restricted set of primary afferent nerve fibers innervate the bone versus skin: therapeutic opportunity for treating skeletal pain. Bone. 2010;46(2):306–313. doi: 10.1016/j.bone.2009.09.013 |
| [104] |
Jimenez-Andrade J.M., Mantyh W.G., Bloom A.P., et al. A phenotypically restricted set of primary afferent nerve fibers innervate the bone versus skin: therapeutic opportunity for treating skeletal pain // Bone. 2010. Vol. 46, N 2. P. 306–313. doi: 10.1016/j.bone.2009.09.013 |
| [105] |
Jimenez-Andrade JM, Martin CD, Koewler NJ, et al. Nerve growth factor sequestering therapy attenuates non-malignant skeletal pain following fracture. Pain. 2007;133:183–196. doi: 10.1016/j.pain.2007.06.016 |
| [106] |
Jimenez-Andrade J.M., Martin C.D., Koewler N.J., et al. Nerve growth factor sequestering therapy attenuates non-malignant skeletal pain following fracture // Pain. 2007. Vol. 133, P. 183–196. doi: 10.1016/j.pain.2007.06.016 |
| [107] |
Castaneda-Corral G, Jimenez-Andrade JM, Bloom AP, et al. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience. 2011;178:196–207. doi: 10.1016/j.neuroscience.2011.01.039 |
| [108] |
Castaneda-Corral G., Jimenez-Andrade J.M., Bloom A.P., et al. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A // Neuroscience. 2011. Vol. 178. P. 196–207. doi: 10.1016/j.neuroscience.2011.01.039 |
| [109] |
Ivanusic JJ. Molecular mechanisms that contribute to bone marrow pain. Front Neurol. 2017;8:458. doi: 10.3389/fneur.2017.00458 |
| [110] |
Ivanusic J.J. Molecular mechanisms that contribute to bone marrow pain // Front Neurol. 2017. Vol. 8. P. 458. doi: 10.3389/fneur.2017.00458 |
| [111] |
Martin CD, Jimenez-Andrade JM, Ghilardi JR, et al. Organization of a unique net-like meshwork of CGRP+ sensory fibers in the mouse periosteum: implications for the generation and maintenance of bone fracture pain. Neurosci Lett. 2007;427(3):148–152. doi: 10.1016/j.neulet.2007.08.055 |
| [112] |
Martin C.D., Jimenez-Andrade J.M., Ghilardi J.R., et al. Organization of a unique net-like meshwork of CGRP+ sensory fibers in the mouse periosteum: implications for the generation and maintenance of bone fracture pain // Neurosci Lett. 2007. Vol. 427, N 3. P. 148–152. doi: 10.1016/j.neulet.2007.08.055 |
| [113] |
Sayilekshmy M, Hansen RB, Delaissé JM, et al. Innervation is higher above bone remodeling surfaces and in cortical pores in human bone: lessons from patients with primary hyperparathyroidism. Sci Rep. 2019;9(1):5361. doi: 10.1038/s41598-019-41779-w |
| [114] |
Sayilekshmy M., Hansen R.B., Delaissé J.M., et al. Innervation is higher above bone remodeling surfaces and in cortical pores in human bone: lessons from patients with primary hyperparathyroidism // Sci Rep. 2019. Vol. 9, N 1. P. 5361. doi: 10.1038/s41598-019-41779-w |
| [115] |
Yoneda T, Hiasa M, Okui T, et al. Cancer-nerve interplay in cancer progression and cancer-induced bone pain. J Bone Miner Metab. 2023;41(3):415–427. doi: 10.1007/s00774-023-01401-6 |
| [116] |
Yoneda T., Hiasa M., Okui T., et al. Cancer-nerve interplay in cancer progression and cancer-induced bone pain // J Bone Miner Metab. 2023. Vol. 41, N 3. P. 415–427. doi: 10.1007/s00774-023-01401-6 |
| [117] |
Ivanusic JJ, Sahai V, Mahns DA. The cortical representation of sensory inputs arising from bone. Brain Res. 2009;1269:47–53. doi: 10.1016/j.brainres.2009.03.001 |
| [118] |
Ivanusic J.J., Sahai V., Mahns D.A. The cortical representation of sensory inputs arising from bone // Brain Res. 2009. Vol. 1269. P. 47–53. doi: 10.1016/j.brainres.2009.03.001 |
| [119] |
Cook AD, Christensen AD, Tewari D, et al. Immune cytokines and their receptors in inflammatory pain. Trends Immunol. 2018;39:240–255. doi: 10.1016/j.it.2017.12.003 |
| [120] |
Cook A.D., Christensen A.D., Tewari D., et al. Immune cytokines and their receptors in inflammatory pain // Trends Immunol. 2018. Vol. 39. P. 240–255. doi: 10.1016/j.it.2017.12.003 |
| [121] |
Denk F, Bennett DL, McMahon SB. Nerve growth factor and pain mechanisms. Annu Rev Neurosci. 2017;40:307–325. doi: 10.1146/annurev-neuro-072116-031121 |
| [122] |
Denk F., Bennett D.L., McMahon S.B. Nerve growth factor and pain mechanisms // Annu Rev Neurosci. 2017. Vol. 40, P. 307–325. doi: 10.1146/annurev-neuro-072116-031121 |
| [123] |
Ringe JD, Body JJ. A review of bone pain relief with ibandronate and other bisphosphonates in disorders of increased bone turnover. Clin Exp Rheumatol. 2007;25(5):766–774. |
| [124] |
Ringe J.D., Body J.J. A review of bone pain relief with ibandronate and other bisphosphonates in disorders of increased bone turnover // Clin Exp Rheumatol. 2007. Vol. 25, N 5. P. 766–774. |
| [125] |
Hiasa M, Okui T, Allette YM, et al. Bone pain induced by multiple myeloma is reduced by targeting V-ATPase and ASIC3. Cancer Res. 2017;77(6):1283–1295. doi: 10.1158/0008-5472.CAN-15-3545 |
| [126] |
Hiasa M., Okui T., Allette Y.M., et al. Bone pain induced by multiple myeloma is reduced by targeting V-ATPase and ASIC3 // Cancer Res. 2017. Vol. 77, N 6. P. 1283–1295. doi: 10.1158/0008-5472.CAN-15-3545 |
| [127] |
Sevcik MA, Luger NM, Mach DB, et al. Bone cancer pain: the effects of the bisphosphonate alendronate on pain, skeletal remodeling, tumor growth and tumor necrosis. Pain. 2004;111(1):169–180. doi: 10.1016/j.pain.2004.06.015 |
| [128] |
Sevcik M.A., Luger N.M., Mach D.B., et al. Bone cancer pain: the effects of the bisphosphonate alendronate on pain, skeletal remodeling, tumor growth and tumor necrosis // Pain. 2004. Vol. 111, N 1. P. 169–180. doi: 10.1016/j.pain.2004.06.015 |
| [129] |
Jimenez-Andrade JM, Ghilardi JR, Castañeda-Corral G, et al. Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain. Pain. 2011;152(11):2564–2574. doi: 10.1016/j.pain.2011.07.020 |
| [130] |
Jimenez-Andrade J.M., Ghilardi J.R., Castañeda-Corral G., et al. Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain // Pain. 2011. Vol. 152, N 11. P. 2564–2574. doi: 10.1016/j.pain.2011.07.020 |
| [131] |
Rapp AE, Kroner J, Baur S, et al. Analgesia via blockade of NGF/TrkA signaling does not influence fracture healing in mice. J Orthop Res. 2015;33(8):1235–1241. doi: 10.1002/jor.22892 |
| [132] |
Rapp A.E., Kroner J., Baur S., et al. Analgesia via blockade of NGF/TrkA signaling does not influence fracture healing in mice // J Orthop Res. 2015. Vol. 33, N 8. P. 1235–1241. doi: 10.1002/jor.22892 |
| [133] |
Li Z, Meyers CA, Chang L, et al. Fracture repair requires TrkA signaling by skeletal sensory nerves. J Clin Invest. 2019;129(12):5137–5150. doi: 10.1172/JCI128428 |
| [134] |
Li Z., Meyers C.A., Chang L., et al. Fracture repair requires TrkA signaling by skeletal sensory nerves // J Clin Invest. 2019. Vol. 129, N 12. P. 5137–5150. doi: 10.1172/JCI128428 |
| [135] |
Grills BL, Schuijers JA, Ward AR. Topical application of nerve growth factor improves fracture healing in rats. J Orthop Res. 1997;15(2):235–242. doi: 10.1002/jor.1100150212 |
| [136] |
Grills B.L., Schuijers J.A., Ward A.R. Topical application of nerve growth factor improves fracture healing in rats // J Orthop Res. 1997. Vol. 15, N 2. P. 235–242. doi: 10.1002/jor.1100150212 |
| [137] |
Wang L, Zhou S, Liu B, et al. Locally applied nerve growth factor enhances bone consolidation in a rabbit model of mandibular distraction osteogenesis. J Orthop Res. 2006;24(12):2238–2245. doi: 10.1002/jor.20269 |
| [138] |
Wang L., Zhou S., Liu B., et al. Locally applied nerve growth factor enhances bone consolidation in a rabbit model of mandibular distraction osteogenesis // J Orthop Res. 2006. Vol. 24, N 12. P. 2238–2245. doi: 10.1002/jor.20269 |
| [139] |
Mantyh PW. The neurobiology of skeletal pain. Eur J Neurosci. 2014;39(3):508–519. doi: 10.1111/ejn.12462 |
| [140] |
Mantyh P.W. The neurobiology of skeletal pain // Eur J Neurosci. 2014. Vol. 39, N 3. P. 508–519. doi: 10.1111/ejn.12462 |
/
| 〈 |
|
〉 |