Analysis of vertebrotomy treatment in children with congenital scoliosis with unsegmented rod and rib synostosis
Marat S. Asadulaev , Sergei V. Vissarionov , Anton S. Shabunin , Kristina N. Rodionova , Yury A. Novosad , Vakhtang G. Toriya , Dmitry N. Kokushin , Nikita O. Khusainov , Aleksandra N. Filippova , Dmitry V. Ryzhikov
Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2024, Vol. 12 ›› Issue (3) : 293 -306.
Analysis of vertebrotomy treatment in children with congenital scoliosis with unsegmented rod and rib synostosis
BACKGROUND: Congenital anomalies of vertebral development account for 2%–11% of cases in the general structure of nosologies that cause spinal deformity. An unsegmented rod (unilateral violation of vertebral segmentation) is attributed to a prognostically unfavorable malformation. Rib synostosis causes the development of thoracic insufficiency syndrome.
AIM: To analyze the results of treatment of children with congenital scoliosis caused by an unsegmented rod and rib synostosis by vertebrotomy.
MATERIALS AND METHODS: This cohort, retrospective, monocenter study evaluated the treatment results of 55 patients. The patients were divided into two groups: group 1, children aged 2–8 years, the scope of intervention was wedge-shaped osteotomy of a non-segmented rod at the apex of the deformity, and group 2, children aged 8–18 years, the scope of intervention was wedge-shaped osteotomy at the apex of the deformity and two linear osteotomies of a non-segmented rod in the cranial and caudal directions. Clinical, radiological, and statistical research methods were used.
RESULTS: Significant correction of scoliosis was achieved in 65.5% of patients aged 2–7 years (group 1) and 56.3% in children aged 8–18 years (group 2). Hypokyphosis of the thoracic spine was observed in the patients. The percentage of correction of kyphosis was 21.1% in group 1 and 19.1% in group 2. Lung volume increased by 27.9% (p = 0.01776) in group 1, and lung volume on the concave side increased by 23.5% (p = 0.04975) and on the convex side by 29.6% (p = 0.01073). Improvement in the overall respiratory impedance reached 47.3% (p < 0.05). In group 2, a insignificant increase was found in VVC by 12.6% (p = 0.3509) and FEV1 by 8.7% of the initial (p = 0.1534), as well as an increase in total lung volume of 13.3% (p = 0.1527) and the contribution of the lung along the concave side of 18.8% (p = 0.1535), and the lung along the convex side was 8.4% (p = 0.169), indicating no significant impact on lung development and function.
CONCLUSIONS: In children with spinal deformity caused by a non-segmented rod with normal respiratory function, vertebrotomy at the apex of the deformity with subsequent correction and stabilization of the spinal deformity is recommended. Performing simultaneous multilevel osteotomies of a non-segmented rod allows for significant correction of rigid spinal deformity.
congenital scoliosis / orthopedics / vertebrotomy / correction of scoliosis / children / spine / congenital malformation / surgery
| [1] |
Zhang YB, Zhang JG. Treatment of early-onset scoliosis: techniques, indications, and complications. Chin Med J (Engl). 2020;133(3):351–357. doi: 10.1097/CM9.0000000000000614 |
| [2] |
Zhang Y.B., Zhang J.G. Treatment of early-onset scoliosis: techniques, indications, and complications // Chin Med J (Engl). 2020. Vol. 133, N 3. P. 351–357. doi: 10.1097/CM9.0000000000000614 |
| [3] |
Lu D, Wu X, Zhao Y, et al. Orthopedic mechanism analysis of growing rod distraction for early-onset scoliosis based on 3D morphological parameters. J Orthop Res. 2024;42(3):685–699. doi: 10.1002/jor.25697 |
| [4] |
Lu D., Wu X., Zhao Y., et al. Orthopedic mechanism analysis of growing rod distraction for early-onset scoliosis based on 3D morphological parameters // J Orthop Res. 2024. Vol. 42, N 3. P. 685–699. doi: 10.1002/jor.25697 |
| [5] |
Stücker R, Mladenov K, Stücker S. Growth-preserving instrumentation for early onset scoliosis. Oper Orthop Traumatol. 2023; 36(1):12–20. (In Ger.). doi: 10.1007/s00064-023-00832-8 |
| [6] |
Stücker R., Mladenov K., Stücker S. Growth-preserving instrumentation for early onset scoliosis // Oper Orthop Traumatol. 2023. Vol. 36, N 1. P. 12–20. doi: 10.1007/s00064-023-00832-8 |
| [7] |
Vissarionov SV, Asadulaev MS, Khardikov MA, et al. Spinal osteotomy for children with congenital scoliosis with unilateral unsegmented bar: preliminary results. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2021;9(4):417–426. EDN: MXUSQH doi: 10.17816/PTORS77239 |
| [8] |
Виссарионов С.В., Асадулаев М.С., Хардиков М.А., и др. Остеотомия позвоночника в лечении детей с врожденным сколиозом при нарушении сегментации боковых поверхностей тел позвонков (предварительные результаты) // Ортопедия, травматология и восстановительная хирургия детского возраста. 2021. Т. 9, № 4. С. 417–426. EDN: MXUSQH doi: 10.17816/PTORS77239 |
| [9] |
Zhang HQ, Xiao LG, Guo CF, et al. Deformed complex vertebral osteotomy technique for management of severe congenital spinal angular kyphotic deformity. Orthop Surg. 2021;13(3):1016–1025. doi: 10.1111/os.13016 |
| [10] |
Zhang H.Q., Xiao L.G., Guo C.F., et al. Deformed complex vertebral osteotomy technique for management of severe congenital spinal angular kyphotic deformity // Orthop Surg. 2021. Vol. 13, N 3. P. 1016–1025. doi: 10.1111/os.13016 |
| [11] |
Ha AS, Cerpa M, Lenke LG. State of the art review: vertebral osteotomies for the management of spinal deformity. Spine Deform. 2020;8(5):829–843. doi: 10.1007/s43390-020-00144-y |
| [12] |
Ha A.S., Cerpa M., Lenke L.G. State of the art review: vertebral osteotomies for the management of spinal deformity // Spine Deform. 2020. Vol. 8, N 5. P. 829–843. doi: 10.1007/s43390-020-00144-y |
| [13] |
Zhao S, Xue X, Li K, et al. Two-staged posterior osteotomy surgery in complex and rigid congenital scoliosis in younger than 10 years old children. BMC Musculoskelet Disord. 2021;22(1):788. doi: 10.1186/s12891-021-04682-y |
| [14] |
Zhao S., Xue X., Li K., et al. Two-staged posterior osteotomy surgery in complex and rigid congenital scoliosis in younger than 10 years old children // BMC Musculoskelet Disord. 2021. Vol. 22, N 1. P. 788. doi: 10.1186/s12891-021-04682-y |
| [15] |
Karol LA. The natural history of early-onset scoliosis. J Pediatr Orthop. 2019;39(6):S38–S43. doi: 10.1097/BPO.0000000000001351 |
| [16] |
Karol L.A. The natural history of early-onset scoliosis // J Pediatr Orthop. 2019. Vol. 39, N 6. P. S38–S43. doi: 10.1097/BPO.0000000000001351 |
| [17] |
Xia T, Sun Y, Wang S, et al. Vertebral artery variation in patients with congenital cervical scoliosis: an anatomical study based on radiological findings. Spine (Phila Pa 1976). 2021;46(4):E216–E221. doi: 10.1097/BRS.0000000000003834 |
| [18] |
Xia T., Sun Y., Wang S., et al. Vertebral artery variation in patients with congenital cervical scoliosis: an anatomical study based on radiological findings // Spine (Phila Pa 1976). 2021. Vol. 46, N 4. P. E216–E221. doi: 10.1097/BRS.0000000000003834 |
| [19] |
McMaster MJ, McMaster ME. Prognosis for congenital scoliosis due to a unilateral failure of vertebral segmentation. J Bone Joint Surg Am. 2013;95(11):972–979. doi: 10.2106/JBJS.L.01096 |
| [20] |
McMaster M.J., McMaster M.E. Prognosis for congenital scoliosis due to a unilateral failure of vertebral segmentation // J Bone Joint Surg Am. 2013. Vol. 95, N 11. P. 972–979. doi: 10.2106/JBJS.L.01096 |
| [21] |
Li S, Ou Y, Liu B, et al. Comparison of osteotomy versus non-osteotomy approach for congenital scoliosis: a retrospective study of three surgical techniques. ANZ J Surg. 2015;85(4):249–254. doi: 10.1111/ans.12886 |
| [22] |
Li Shenghua, Ou Y., Liu B., Zhu Y., et al. Comparison of osteotomy versus non-osteotomy approach for congenital scoliosis: a retrospective study of three surgical techniques // ANZ J Surg. 2015. Vol. 85, N 4. P. 249–254. doi: 10.1111/ans.12886 |
| [23] |
Mikhailovsky MV, Suzdalov VA. Thoracic insufficiency syndromein infantile congenital scoliosis. Russian Journal of Spine Surgery. 2010;(3):20–28. EDN: MUPPHZ doi: 10.14531/ss2010.3.20-28 |
| [24] |
Михайловский М.В., Суздалов В.А. Синдром торакальной недостаточности при инфантильном врожденном сколиозе // Хирургия позвоночника. 2010. № 3. C. 20–28. EDN: MUPPHZ doi: 10.14531/ss2010.3.20-28 |
| [25] |
Mayer O, Campbell R, Cahill P, et al. Thoracic insufficiency syndrome. Curr Probl Pediatr Adolesc Health Care. 2016;46(3):72–97. doi: 10.1016/j.cppeds.2015.11.001 |
| [26] |
Mayer O., Campbell R., Cahill P., et al. Thoracic insufficiency syndrome // Curr Probl Pediatr Adolesc Health Care. 2016. Vol. 46, N 3. P. 72–97. doi: 10.1016/j.cppeds.2015.11.001 |
| [27] |
Campbell RM Jr, Smith MD, Mayes TC, et al. The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am. 2003;85(3):399–408. doi: 10.2106/00004623-200303000-00001 |
| [28] |
Campbell R.M. Jr., Smith M.D., Mayes T.C., et al. The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis // J Bone Joint Surg Am. 2003. Vol. 85, N 3. P. 399–408. doi: 10.2106/00004623-200303000-00001 |
| [29] |
Romberg K, Fagevik Olsén M, Kjellby-Wendt G, et al. Thoracic mobility and its relation to pulmonary function and rib-cage deformity in patients with early onset idiopathic scoliosis: a long-term follow-up. Spine Deform. 2020;8(2):257–268. doi: 10.1007/s43390-019-00018-y |
| [30] |
Romberg K., Fagevik Olsén M., Kjellby-Wendt G., et al. Thoracic mobility and its relation to pulmonary function and rib-cage deformity in patients with early onset idiopathic scoliosis: a long-term follow-up // Spine Deform. 2020. Vol. 8, N 2. P. 257–268. doi: 10.1007/s43390-019-00018-y |
| [31] |
Hedequist DJ. Surgical treatment of congenital scoliosis. Orthop Clin North Am. 2007;38(4):497–vi. doi: 10.1016/j.ocl.2007.05.002 |
| [32] |
Hedequist D.J. Surgical treatment of congenital scoliosis // Orthop Clin North Am. 2007. Vol. 38, N 4. P. 497-vi. doi: 10.1016/j.ocl.2007.05.002 |
| [33] |
Lattig F, Taurman R, Hell AK. Treatment of Early-Onset Spinal Deformity (EOSD) with VEPTR. Clin Spine Surg. 2016;29(5):E246–E251. doi: 10.1097/BSD.0b013e31826eaf27 |
| [34] |
Lattig F., Taurman R., Hell A.K. Treatment of Early-Onset Spinal Deformity (EOSD) with VEPTR // Clin Spine Surg. 2016. Vol. 29, N 5. P. E246–E251. doi: 10.1097/BSD.0b013e31826eaf27 |
| [35] |
Skaggs DL, Guillaume T, El-Hawary R, et al. Early Onset Scoliosis Consensus Statement, SRS Growing Spine Committee, 2015. Spine Deformity. 2015:3(2);107. doi: 10.1016/j.jspd.2015.01.002 |
| [36] |
Skaggs D.L., Guillaume T., El-Hawary R., et al. Early onset scoliosis consensus statement, SRS Growing Spine Committee // Spine Deformity. 2015. Vol. 3, N 2. P. 107. doi: 10.1016/j.jspd.2015.01.002 |
| [37] |
Liu Z, Cheng Y, Hai Y, et al. Developments in congenital scoliosis and related research from 1992 to 2021: a thirty-year bibliometric analysis. World Neurosurg. 2022;164:e24–e44. doi: 10.1016/j.wneu.2022.02.117 |
| [38] |
Liu Z., Cheng Y., Hai Y., et al. Developments in congenital scoliosis and related research from 1992 to 2021: a thirty-year bibliometric analysis // World Neurosurg. 2022. Vol. 164. P. e24–e44. doi: 10.1016/j.wneu.2022.02.117 |
| [39] |
Ryabyh SO, Ul’rih EV, Mushkin, et al. Treatment of congenital spinal deformities in children: yesterday, today, tomorrow. Russian Journal of Spine Surgery. 2020;17(1):15–24. doi: 10.14531/ss2020.1.15-24 |
| [40] |
Рябых С.О., Ульрих Э.В., Мушкин А.Ю., и др. Лечение врожденных деформаций позвоночника у детей: вчера, сегодня, завтра // Хирургия позвоночника. 2020. Т. 17, № 1. С. 15–24. doi: 10.14531/ss2020.1.15-24 |
| [41] |
Winter RB. Congenital thoracic scoliosis with unilateral unsegmented bar, convex hemivertebrae, and fused concave ribs with severe progression after posterior fusion at age 2: 40-year follow-up after revision anterior and posterior surgery at age 8. Spine (Phila Pa 1976). 2012;37(8):E507–E510. doi: 10.1097/BRS.0b013e31824ac401 |
| [42] |
Winter R.B. Congenital thoracic scoliosis with unilateral unsegmented bar, convex hemivertebrae, and fused concave ribs with severe progression after posterior fusion at age 2: 40-year follow-up after revision anterior and posterior surgery at age 8 // Spine. 2012. Vol. 37, N 8. P. E507–E510. doi: 10.1097/BRS.0b013e31824ac401 |
| [43] |
Abdelaal A, Munigangaiah S, Davidson N, et al. Early-onset scoliosis: challenges and current management options. Orthopaedics and Trauma. 2020;34(6):390–396. doi: 10.1016/j.mporth.2020.09.009 |
| [44] |
Abdelaal A., Munigangaiah S., Davidson N., et al. Early-onset scoliosis: challenges and current management options // Orthop Trauma. 2020. Vol. 34, N 6. P. 390–396. doi: 10.1016/j.mporth.2020.09.009 |
| [45] |
Cheung JPY, Yiu K, Kwan K, et al. Mean 6-year follow-up of magnetically controlled growing rod patients with early onset scoliosis: a glimpse of what happens to graduates. Neurosurgery. 2019;84(5):1112–1123. doi: 10.1093/neuros/nyy270 |
| [46] |
Cheung J.P.Y., Yiu K., Kwan K., et al. Mean 6-year follow-up of magnetically controlled growing rod patients with early onset scoliosis: a glimpse of what happens to graduates // Neurosurgery. 2019. Vol. 84. P. 1112–1123. doi: 10.1093/neuros/nyy270 |
| [47] |
Sun X, Xu L, Chen ZH, et al. Comparison of hybrid and traditional growing rod techniques in the treatment of early-onset congenital scoliosis. Zhonghua Wai Ke Za Zhi. 2019;57(5):342–347. (In Chi.) doi: 10.3760/cma.j.issn.0529-5815.2019.05.005 |
| [48] |
Sun X., Xu L., Chen Z.H., et al. Comparison of hybrid and traditional growing rod techniques in the treatment of early-onset congenital scoliosis // Zhonghua Wai Ke Za Zhi. 2019. Vol. 57, N 5. P. 342–347. doi: 10.3760/cma.j.issn.0529-5815.2019.05.005 |
| [49] |
Dayer R, Ceroni D, Lascombes P. Treatment of congenital thoracic scoliosis with associated rib fusions using VEPTR expansion thoracostomy: a surgical technique. Eur Spine J. 2014;23(4):424–431. doi: 10.1007/s00586-014-3338-3 |
| [50] |
Dayer R., Ceroni D., Lascombes P. Treatment of congenital thoracic scoliosis with associated rib fusions using VEPTR expansion thoracostomy: a surgical technique // Eur Spine J. 2014. Vol. 23, N 4. P. S424–S431. doi: 10.1007/s00586-014-3338-3 |
| [51] |
Campbell RM Jr, Smith MD, Mayes TC, et al. The effect of opening wedge thoracostomy on thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am. 2004;86(8):1659–1674. doi: 10.2106/00004623-200408000-00009 |
| [52] |
Campbell R.M. Jr., Smith M.D., Mayes T.C., et al. The effect of opening wedge thoracostomy on thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis // J Bone Joint Surg. Am. 2004. Vol. 86, N 8. P. 1659–1674. doi: 10.2106/00004623-200408000-00009 |
| [53] |
Diméglio A, Canavese F. The growing spine: how spinal deformities influence normal spine and thoracic cage growth. Eur Spine J Springer-Verlag. 2012;21(1):64–70. doi: 10.1007/s00586-011-1983-3 |
| [54] |
Diméglio A., Canavese F. The growing spine: how spinal deformities influence normal spine and thoracic cage growth // Eur Spine J. Springer-Verlag. 2012. Vol. 21, N 1. P. 64–70. doi: 10.1007/s00586-011-1983-3 |
| [55] |
Sankar WN, Acevedo DC, Skaggs DL. Comparison of complications among growing spinal implants. Spine (Phila Pa 1976). 2010;35(23):2091–2096. doi: 10.1097/BRS.0b013e3181c6edd7 |
| [56] |
Sankar W.N., Axevedo D.C., Skaggs D.L. Comparison of complications among growing spinal implants // Spine (Phila Pa 1976). 2010. Vol. 35, N 23. P. 2091–2096. doi: 10.1097/BRS.0b013e3181c6edd7 |
| [57] |
Schlösser TPC, Kruyt MC, Tsirikos AI. Surgical management of early-onset scoliosis: indications and currently available techniques. Orthopaedics and Trauma. 2021;35(6):1–11. doi: 10.1016/j.mporth.2021.09.004 |
| [58] |
Schlösser T.P.C., Kruyt M.C., Tsirikos A.I. Surgical management of early-onset scoliosis: indications and currently available techniques // Orthopaedics and Trauma. 2021. Vol. 35, N 6. P. 1–11. doi: 10.1016/j.mporth.2021.09.004 |
| [59] |
Caliskan E, Ozturk M. Determination of normal lung volume using computed tomography in children and adolescents. Original Article. 2019;26(4):588–592. doi: 10.5455/annalsmedres.2018.12.308 |
| [60] |
Caliskan E., Ozturk M. Determination of normal lung volume using computed tomography in children and adolescents // Original Article. 2019. Vol. 26, N 4. P. 588–592. doi: 10.5455/annalsmedres.2018.12.308 |
| [61] |
Patent RUS N 196831 / 21.04.2023. Vissarionov SV, Asadulaev MS, Kokushin DN. Method of correction of congenital spinal deformity with segmentation disorder of lateral surfaces of vertebral bodies in school-age children. EDN: LEBRZL (In Russ.) |
| [62] |
Патент РФ на изобретение № 2794588 / 21.04.2023. Виссарионов С.В., Асадулаев М.С., Кокушин Д.Н. Способ коррекции врожденной деформации позвоночника при нарушении сегментации боковых поверхностей тел позвонков у детей школьного возраста. EDN: LEBRZL |
| [63] |
Tong Y, Udupa JK, McDonough JM, et al. Quantitative dynamic thoracic MRI: application to thoracic insufficiency syndrome in pediatric patients. J Radiology. 2019;292(1):206–213. doi: 10.1148/radiol.2019181731 |
| [64] |
Tong Y., Udupa J.K., McDonough J.M., et al Quantitative dynamic thoracic MRI: application to thoracic insufficiency syndrome in pediatric patients // J Radiology. 2019. Vol. 292, N 1. P. 206–213. doi: 10.1148/radiol.2019181731 |
| [65] |
Cunin V. Early-onset scoliosis: current treatment. Orthop Traumatol Surg Res. 2015;101(1 Suppl):S109–S118. doi: 10.1016/j.otsr.2014.06.032 |
| [66] |
Cunin V. Early-onset scoliosis: current treatment // Orthop Traumatol Surg Res. 2015. Vol. 101, N 1. P. S109–S118. doi: 10.1016/j.otsr.2014.06.032 |
| [67] |
Zhang YB, Zhang JG. Treatment of early-onset scoliosis: techniques, indications, and complications. Chin Med J (Engl). 2020;133(3):351–357. doi: 10.1097/CM9.0000000000000614 |
| [68] |
Zhang Y.B., Zhang J.G. Treatment of early-onset scoliosis: techniques, indications, and complications // Chin Med J (Engl). 2020. Vol. 133, N 3. P. 351–357. doi: 10.1097/CM9.0000000000000614 |
| [69] |
Mackel CE, Jada A, Samdani AF, et al. A comprehensive review of the diagnosis and management of congenital scoliosis. Childs Nerv Syst. 2018;34(11):2155–2171. doi: 10.1007/s00381-018-3915-6 |
| [70] |
Mackel C.E., Jada A., Samdani A.F., et al. A comprehensive review of the diagnosis and management of congenital scoliosis // Childs Nerv Syst. 2018. Vol. 34, N 11. P. 2155–2171. doi: 10.1007/s00381-018-3915-6 |
| [71] |
Yang S, Andras LM, Redding GJ, et al. Early-onset scoliosis: a review of history, current treatment, and future direction. Pediatrics. 2016;137(1). doi: 10.1542/peds.2015-0709 |
| [72] |
Yang S., Andras G.J., Redding G.J. Early-onset scoliosis: a review of history, current treatment, and future direction // Pediatrics. 2016. Vol. 137, N 1. doi: 10.1542/peds.2015-0709 |
| [73] |
Chao Li C, Fu Q, Zhou Y, et al. Surgical treatment of severe congenital scoliosis with unilateral unsegmented bar by concave costovertebral joint release and both-ends wedge osteotomy via posterior approach. Eur Spine J. 2012;21(3):498–505. doi: 10.1007/s00586-011-1972-6 |
| [74] |
Li C., Fu Q., Zhou Y., et al. Surgical treatment of severe congenital scoliosis with unilateral unsegmented bar by concave costovertebral joint release and both-ends wedge osteotomy via posterior approach // Eur Spine J. 2012. Vol. 21, N 3. P. 498–505. doi: 10.1007/s00586-011-1972-6 |
| [75] |
Suk SI, Chung ER, Kim JH, et al. Posterior vertebral column resection for severe rigid scoliosis. Spine (Phila Pa 1976). 2005;30(14):1682–1687. doi: 10.1097/01.brs.0000170590.21071.c1 |
| [76] |
Suk S.I., Chung E.R., Kim J.H., et al. Posterior vertebral column resection for severe rigid scoliosis // Spine. 2005. Vol. 30, N 14. P. 1682–1687. doi: 10.1097/01.brs.0000170590.21071.c1 |
/
| 〈 |
|
〉 |