In vivo application of prevascularized bone scaffolds: A literature review

Yury A. Novosad , Polina А. Pershina , Anton S. Shabunin , Marat S. Asadulaev , Olga L. Vlasova , Sergei V. Vissarionov

Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2024, Vol. 12 ›› Issue (1) : 77 -87.

PDF (732KB)
Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2024, Vol. 12 ›› Issue (1) : 77 -87. DOI: 10.17816/PTORS622772
Scientific reviews
review-article

In vivo application of prevascularized bone scaffolds: A literature review

Author information +
History +
PDF (732KB)

Abstract

BACKGROUND: Despite expanding research, the development of materials for replacing bone defects remains an urgent problem in orthopedics and traumatology. Thus, one of the most important tasks is to create conditions for proper trophicity of the bone implant.

AIM: To analyze modern approaches to bone scaffold vascularization and evaluate their adequacy in in vivo models.

MATERIALS AND METHODS: The article presents a literature review dedicated to the methods of vascularization of bone scaffolds. A literature search was performed in PubMed, ScienceDirect, eLibrary, and Google Scholar databases from 2013 to 2023 using keywords, and 271 sources were identified. After exclusion, 95 articles were analyzed, and the results of 38 original studies and one literature review were presented.

RESULTS: Regardless of the initial vascularization method of scaffolds, bone implants show distinct osteoinductive features and promote advanced bone tissue regeneration. Constructs based on solid polymers and calcium–phosphate compositions also perform osteoconductive functions. Mesenchymal stem cells are used as the main cell type, as well as vessel-type cells, which in cooperation also have a positive effect on bone-defect remodeling. Bone morphogenetic proteins are used for directed differentiation in the osteogenic direction, and vascular endothelial growth factor is used for differentiation in the vascular pathway.

CONCLUSIONS: At present, no method for vascularization of scaffolds has been approved universally. In addition, no evidence supported the comparative effectiveness of vascularization methods, whereas animal model studies have demonstrated a positive effect of prevascularized patterns on the recovery rate of minor and critical defects.

Keywords

prevascularized bone scaffolds / arteriovenous loops / 3D bioprinting / cell sheets

Cite this article

Download citation ▾
Yury A. Novosad, Polina А. Pershina, Anton S. Shabunin, Marat S. Asadulaev, Olga L. Vlasova, Sergei V. Vissarionov. In vivo application of prevascularized bone scaffolds: A literature review. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery, 2024, 12(1): 77-87 DOI:10.17816/PTORS622772

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kneser U, Kaufmann PM, Fiegel HC, et al. Long-term differentiated function of heterotopically transplanted hepatocytes on three-dimensional polymer matrices. J Biomed Mater Res. 1999;47(4):494–503. doi: 10.1002/(sici)1097-4636(19991215)47:4<494::aid-jbm5>3.0.co;2-l

[2]

Kneser U., Kaufmann P.M., Fiegel H.C., et al. Long-term differentiated function of heterotopically transplanted hepatocytes on three-dimensional polymer matrices // J Biomed Mater Res. 1999. Vol. 47, N. 4. P. 494–503. doi: 10.1002/(sici)1097-4636(19991215)47:4<494::aid-jbm5>3.0.co;2-l

[3]

Kneser U, Kaufmann PM, Fiegel HC, et al. Long-term differentiated function of heterotopically transplanted hepatocytes on three-dimensional polymer matrices. J Biomed Mater Res. 1999;47(4):494–503. doi: 10.1002/(sici)1097-4636(19991215)47:4<494::aid-jbm5>3.0.co;2-l

[4]

Kushchayeva Y, Pestun I, Kushchayev S, et al. Advancement in the treatment of osteoporosis and the effects on bone healing. J Clin Med. 2022;11(24):7477. doi: 10.3390/jcm11247477

[5]

Kushchayeva Y., Pestun I., Kushchayev S., et al. Advancement in the treatment of osteoporosis and the effects on bone healing // J Clin Med. 2022. Vol. 11, N. 24. P. 7477. doi: 10.3390/jcm11247477

[6]

Kushchayeva Y, Pestun I, Kushchayev S, et al. Advancement in the treatment of osteoporosis and the effects on bone healing. J Clin Med. 2022;11(24):7477. doi: 10.3390/jcm11247477

[7]

You Q, Lu M, Li Z, et al. Cell sheet technology as an engineering-based approach to bone regeneration. Int J Nanomedicine. 2022;17:6491–6511. doi: 10.2147/IJN.S382115

[8]

You Q., Lu M., Li Z., et al. Cell sheet technology as an engineering-based approach to bone regeneration // Int J Nanomedicine. 2022. Vol. 17. P. 6491–6511. doi: 10.2147/IJN.S382115

[9]

You Q, Lu M, Li Z, et al. Cell sheet technology as an engineering-based approach to bone regeneration. Int J Nanomedicine. 2022;17:6491–6511. doi: 10.2147/IJN.S382115

[10]

Zhang J, Huang Y, Wang Y, et al. Construction of biomimetic cell-sheet-engineered periosteum with a double cell sheet to repair calvarial defects of rats. J Orthop Translat. 2022;38:1–11. doi: 10.1016/j.jot.2022.09.005

[11]

Zhang J., Huang Y., Wang Y., et al. Construction of biomimetic cell-sheet-engineered periosteum with a double cell sheet to repair calvarial defects of rats // J Orthop Translat. 2023. Vol. 38. P. 1–11. doi: 10.1016/j.jot.2022.09.005

[12]

Zhang J, Huang Y, Wang Y, et al. Construction of biomimetic cell-sheet-engineered periosteum with a double cell sheet to repair calvarial defects of rats. J Orthop Translat. 2022;38:1–11. doi: 10.1016/j.jot.2022.09.005

[13]

Pirraco RP, Iwata T, Yoshida T, et al. Endothelial cells enhance the in vivo bone-forming ability of osteogenic cell sheets. Lab Invest. 2014;94(6):663–673. doi: 10.1038/labinvest.2014.55

[14]

Pirraco R.P., Iwata T., Yoshida T., et al. Endothelial cells enhance the in vivo bone-forming ability of osteogenic cell sheets // Lab Invest. 2014. Vol. 94, N. 6. P. 663–673. doi: 10.1038/labinvest.2014.55

[15]

Pirraco RP, Iwata T, Yoshida T, et al. Endothelial cells enhance the in vivo bone-forming ability of osteogenic cell sheets. Lab Invest. 2014;94(6):663–673. doi: 10.1038/labinvest.2014.55

[16]

Kawecki F, Galbraith T, Clafshenkel WP, et al. In vitro prevascularization of self-assembled human bone-like tissues and preclinical assessment using a rat calvarial bone defect model. Materials (Basel). 2021;14(8):2023. doi: 10.3390/ma14082023

[17]

Kawecki F., Galbraith T., Clafshenkel W.P., et al. In vitro prevascularization of self-assembled human bone-like tissues and preclinical assessment using a rat calvarial bone defect model // Materials (Basel). 2021. Vol. 14, N. 8. P. 2023. doi: 10.3390/ma14082023

[18]

Kawecki F, Galbraith T, Clafshenkel WP, et al. In vitro prevascularization of self-assembled human bone-like tissues and preclinical assessment using a rat calvarial bone defect model. Materials (Basel). 2021;14(8):2023. doi: 10.3390/ma14082023

[19]

Ren L, Ma D, Liu B, et al. Preparation of three-dimensional vascularized MSC cell sheet constructs for tissue regeneration. Biomed Res Int. 2014;2014. doi: 10.1155/2014/301279

[20]

Ren L., Ma D., Liu B., et al. Preparation of three-dimensional vascularized MSC cell sheet constructs for tissue regeneration // Biomed Res Int. 2014. Vol. 2014. doi: 10.1155/2014/301279

[21]

Ren L, Ma D, Liu B, et al. Preparation of three-dimensional vascularized MSC cell sheet constructs for tissue regeneration. Biomed Res Int. 2014;2014. doi: 10.1155/2014/301279

[22]

Guo T, Yuan X, Li X, et al. Bone regeneration of mouse critical-sized calvarial defects with human mesenchymal stem cell sheets co-expressing BMP2 and VEGF. J Dent Sci. 2023;18(1):135–144. doi: 10.1016/j.jds.2022.06.020

[23]

Guo T., Yuan X., Li X., et al. Bone regeneration of mouse critical-sized calvarial defects with human mesenchymal stem cell sheets co-expressing BMP2 and VEGF // J Dent Sci. 2023. Vol. 18, N. 1. P. 135–144. doi: 10.1016/j.jds.2022.06.020 2023

[24]

Guo T, Yuan X, Li X, et al. Bone regeneration of mouse critical-sized calvarial defects with human mesenchymal stem cell sheets co-expressing BMP2 and VEGF. J Dent Sci. 2023;18(1):135–144. doi: 10.1016/j.jds.2022.06.020

[25]

Lin Z, Zhang X, Fritch MR, et al. Engineering pre-vascularized bone-like tissue from human mesenchymal stem cells through simulating endochondral ossification. Biomaterials. 2022;283. doi: 10.1016/j.biomaterials.2022.121451

[26]

Lin Z., Zhang X., Fritch M.R., et al. Engineering pre-vascularized bone-like tissue from human mesenchymal stem cells through simulating endochondral ossification // Biomaterials. 2022. Vol. 283. doi: 10.1016/j.biomaterials.2022.121451

[27]

Lin Z, Zhang X, Fritch MR, et al. Engineering pre-vascularized bone-like tissue from human mesenchymal stem cells through simulating endochondral ossification. Biomaterials. 2022;283. doi: 10.1016/j.biomaterials.2022.121451

[28]

Zhang H, Zhou Y, Yu N, et al. Construction of vascularized tissue-engineered bone with polylysine-modified coral hydroxyapatite and a double cell-sheet complex to repair a large radius bone defect in rabbits. Acta Biomater. 2019;91:82–98. doi: 10.1016/j.actbio.2019.04.024

[29]

Zhang H., Zhou Y., Yu N., et al. Construction of vascularized tissue-engineered bone with polylysine-modified coral hydroxyapatite and a double cell-sheet complex to repair a large radius bone defect in rabbits // Acta Biomater. 2019. Vol. 91. P. 82–98. doi: 10.1016/j.actbio.2019.04.024

[30]

Zhang H, Zhou Y, Yu N, et al. Construction of vascularized tissue-engineered bone with polylysine-modified coral hydroxyapatite and a double cell-sheet complex to repair a large radius bone defect in rabbits. Acta Biomater. 2019;91:82–98. doi: 10.1016/j.actbio.2019.04.024

[31]

Zhang D, Gao P, Li Q, et al. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats. Stem Cell Res Ther. 2017;8(1):134. doi: 10.1186/s13287-017-0592-4

[32]

Zhang D., Gao P., Li Q., et al. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats // Stem Cell Res Ther. 2017. Vol. 8, N. 1. P. 134. doi: 10.1186/s13287-017-0592-4

[33]

Zhang D, Gao P, Li Q, et al. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats. Stem Cell Res Ther. 2017;8(1):134. doi: 10.1186/s13287-017-0592-4

[34]

Zhu W, Qu X, Zhu J, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials. 2017;124:106–115. doi: 10.1016/j.biomaterials.2017.01.042

[35]

Zhu W., Qu X., Zhu J., et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture // Biomaterials. 2017. Vol. 124. P. 106–115. doi: 10.1016/j.biomaterials.2017.01.042

[36]

Zhu W, Qu X, Zhu J, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials. 2017;124:106–115. doi: 10.1016/j.biomaterials.2017.01.042

[37]

Zhang W, Feng C, Yang G, et al. 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. Biomaterials. 2017;135:85–95. doi: 10.1016/j.biomaterials.2017.05.005

[38]

Zhang W., Feng C., Yang G., et al. 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration // Biomaterials. 2017. Vol. 135. P. 85–95. doi: 10.1016/j.biomaterials.2017.05.005 2017

[39]

Zhang W, Feng C, Yang G, et al. 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. Biomaterials. 2017;135:85–95. doi: 10.1016/j.biomaterials.2017.05.005

[40]

Wang X, Yunru Y, Chaoyu Y, et al. Microfluidic 3D printing responsive scaffolds with biomimetic enrichment channels for bone regeneration. Adv Funct Mater. 2021;31(40). doi: 10.1002/adfm.202105190

[41]

Wang X., Yunru Y., Chaoyu Y., et al. Microfluidic 3D printing responsive scaffolds with biomimetic enrichment channels for bone regeneration // Adv Funct Mater. 2021. Vol. 31, N. 40. doi: 10.1002/adfm.202105190

[42]

Wang X, Yunru Y, Chaoyu Y, et al. Microfluidic 3D printing responsive scaffolds with biomimetic enrichment channels for bone regeneration. Adv Funct Mater. 2021;31(40). doi: 10.1002/adfm.202105190

[43]

Xu J, Shen J, Sun Y, et al. In vivo prevascularization strategy enhances neovascularization of β-tricalcium phosphate scaffolds in bone regeneration. J Orthop Translat. 2022;37:143–151. doi: 10.1016/j.jot.2022.09.001

[44]

Xu J., Shen J., Sun Y., et al. In vivo prevascularization strategy enhances neovascularization of β-tricalcium phosphate scaffolds in bone regeneration // J Orthop Translat. 2022. Vol. 37. P. 143–151. doi: 10.1016/j.jot.2022.09.001

[45]

Xu J, Shen J, Sun Y, et al. In vivo prevascularization strategy enhances neovascularization of β-tricalcium phosphate scaffolds in bone regeneration. J Orthop Translat. 2022;37:143–151. doi: 10.1016/j.jot.2022.09.001

[46]

Lin Y, Shen J, Sun Y, et al. In vivo prevascularization strategy enhances neovascularization of β-tricalcium phosphate scaffolds in bone regeneration. J Orthop Translat. 2022;35(7):1031–1041. doi: 10.1016/j.jot.2022.09.001 2019

[47]

Lin Y., Shen J., Sun Y., et al. In vivo prevascularization strategy enhances neovascularization of β-tricalcium phosphate scaffolds in bone regeneration // J Orthop Translat. 2022. Vol. 35, N. 7. P. 1031–1041. doi: 10.1016/j.jot.2022.09.001 2019

[48]

Lin Y, Shen J, Sun Y, et al. In vivo prevascularization strategy enhances neovascularization of β-tricalcium phosphate scaffolds in bone regeneration. J Orthop Translat. 2022;35(7):1031–1041. doi: 10.1016/j.jot.2022.09.001 2019

[49]

Mishra R, Roux BM, Posukonis M, et al. Effect of prevascularization on in vivo vascularization of poly(propylene fumarate)/fibrin scaffolds. Biomaterials. 2016;77:255–266. doi: 10.1016/j.biomaterials.2015.10.026

[50]

Mishra R., Roux B.M., Posukonis M., et al. Effect of prevascularization on in vivo vascularization of poly(propylene fumarate)/fibrin scaffolds // Biomaterials. 2016. Vol. 77. P. 255–266. doi: 10.1016/j.biomaterials.2015.10.026

[51]

Mishra R, Roux BM, Posukonis M, et al. Effect of prevascularization on in vivo vascularization of poly(propylene fumarate)/fibrin scaffolds. Biomaterials. 2016;77:255–266. doi: 10.1016/j.biomaterials.2015.10.026

[52]

Buckley C, Madhavarapu S, Kamara Z, et al. In vivo evaluation of the regenerative capacity of a nanofibrous, prevascularized, load-bearing scaffold for bone tissue engineering. Regen Eng Transl Med. 2023. doi: 10.1007/s40883-023-00303-3

[53]

Buckley C., Madhavarapu S., Kamara Z., et al. In vivo evaluation of the regenerative capacity of a nanofibrous, prevascularized, load-bearing scaffold for bone tissue engineering // Regen Eng Transl Med. 2023. doi: 10.1007/s40883-023-00303-3

[54]

Buckley C, Madhavarapu S, Kamara Z, et al. In vivo evaluation of the regenerative capacity of a nanofibrous, prevascularized, load-bearing scaffold for bone tissue engineering. Regen Eng Transl Med. 2023. doi: 10.1007/s40883-023-00303-3

[55]

Nulty J, Freeman FE, Browe DC, et al. 3D bioprinting of prevascularised implants for the repair of critically-sized bone defects. Acta Biomater. 2021;126:154–169. doi: 10.1016/j.actbio.2021.03.003

[56]

Nulty J., Freeman F.E., Browe D.C., et al. 3D bioprinting of prevascularised implants for the repair of critically-sized bone defects. Acta Biomater. 2021. Vol. 126. P. 154–169. doi: 10.1016/j.actbio.2021.03.003

[57]

Nulty J, Freeman FE, Browe DC, et al. 3D bioprinting of prevascularised implants for the repair of critically-sized bone defects. Acta Biomater. 2021;126:154–169. doi: 10.1016/j.actbio.2021.03.003

[58]

Hann SY, Cui H, Esworthy T, et al. Recent advances in 3D printing: vascular network for tissue and organ regeneration. Transl Res. 2019;211:46–63. doi: 10.1016/j.trsl.2019.04.002

[59]

Hann S.Y., Cui H., Esworthy T., et al. Recent advances in 3D printing: vascular network for tissue and organ regeneration // Transl Res. 2019. Vol. 211. P. 46–63. doi: 10.1016/j.trsl.2019.04.002

[60]

Hann SY, Cui H, Esworthy T, et al. Recent advances in 3D printing: vascular network for tissue and organ regeneration. Transl Res. 2019;211:46–63. doi: 10.1016/j.trsl.2019.04.002

[61]

Li C, Han X, Ma Z, et al. Engineered customizable microvessels for progressive vascularization in large regenerative implants. Adv Healthc Mater. 2022;11(4). doi: 10.1002/adhm.202101836

[62]

Li C., Han X., Ma Z., et al. Engineered customizable microvessels for progressive vascularization in large regenerative implants // Adv Healthc Mater. 2022. Vol. 11, N. 4. doi: 10.1002/adhm.202101836

[63]

Li C, Han X, Ma Z, et al. Engineered customizable microvessels for progressive vascularization in large regenerative implants. Adv Healthc Mater. 2022;11(4). doi: 10.1002/adhm.202101836

[64]

Anada T, Pan CC, Stahl AM, et al. Vascularized bone-mimetic hydrogel constructs by 3d bioprinting to promote osteogenesis and angiogenesis. Int J Mol Sci. 2019;20(5):1096. doi: 10.3390/ijms20051096

[65]

Anada T., Pan C.C., Stahl A.M., et al. Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote osteogenesis and angiogenesis // Int J Mol Sci. 2019. Vol. 20, N. 5. P. 1096. doi: 10.3390/ijms20051096

[66]

Anada T, Pan CC, Stahl AM, et al. Vascularized bone-mimetic hydrogel constructs by 3d bioprinting to promote osteogenesis and angiogenesis. Int J Mol Sci. 2019;20(5):1096. doi: 10.3390/ijms20051096

[67]

Kuss MA, Wu S, Wang Y, et al. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture. J Biomed Mater Res B Appl Biomater. 2018;106(5):1788–1798. doi: 10.1002/jbm.b.33994

[68]

Kuss M.A., Wu S., Wang Y., et al. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture // J Biomed Mater Res B Appl Biomater. 2018. Vol. 106, N. 5. P. 1788–1798. doi: 10.1002/jbm.b.33994

[69]

Kuss MA, Wu S, Wang Y, et al. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture. J Biomed Mater Res B Appl Biomater. 2018;106(5):1788–1798. doi: 10.1002/jbm.b.33994

[70]

Shabunin AS, Asadulaev MS, Vissarionov SV, et al. Surgical treatment of children with extensive bone defects (literature review). Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2021;9(3):353–366. EDN: XHHVUM doi: 10.17816/PTORS65071

[71]

Шабунин А.С., Асадулаев М.С., Виссарионов С.В., и др. Хирургическое лечение детей с обширными дефектами костной ткани (обзор литературы) // Ортопедия, травматология и восстановительная хирургия детского возраста. 2021. Т. 9, № 3. C. 353–366. EDN: XHHVUM doi: 10.17816/PTORS65071

[72]

Shabunin AS, Asadulaev MS, Vissarionov SV, et al. Surgical treatment of children with extensive bone defects (literature review). Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2021;9(3):353–366. EDN: XHHVUM doi: 10.17816/PTORS65071

[73]

Weigand A, Beier JP, Hess A, et al. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization. Tissue Eng Part A. 2015;21(9–10):1680–1694. doi: 10.1089/ten.TEA.2014.0568

[74]

Weigand A., Beier J.P., Hess A., et al. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization // Tissue Eng Part A. 2015. Vol. 21, N. 9–10. P. 1680–1694. doi: 10.1089/ten.TEA.2014.0568

[75]

Weigand A, Beier JP, Hess A, et al. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization. Tissue Eng Part A. 2015;21(9–10):1680–1694. doi: 10.1089/ten.TEA.2014.0568

[76]

Steiner D, Reinhardt L, Fischer L, et al. Impact of endothelial progenitor cells in the vascularization of osteogenic scaffolds. Cells. 2022;11(6):926. doi: 10.3390/cells11060926

[77]

Steiner D., Reinhardt L., Fischer L., et al. Impact of endothelial progenitor cells in the vascularization of osteogenic scaffolds // Cells. 2022. Vol. 11, N. 6. doi: 10.3390/cells11060926

[78]

Steiner D, Reinhardt L, Fischer L, et al. Impact of endothelial progenitor cells in the vascularization of osteogenic scaffolds. Cells. 2022;11(6):926. doi: 10.3390/cells11060926

[79]

Koepple C, Pollmann L, Pollmann NS, et al. Microporous polylactic acid scaffolds enable fluorescence-based perfusion imaging of intrinsic in vivo vascularization. Int J Mol Sci. 2023;24(19). doi: 10.3390/ijms241914813

[80]

Koepple C., Pollmann L., Pollmann N.S., et al. Microporous polylactic acid scaffolds enable fluorescence-based perfusion imaging of intrinsic in vivo vascularization // Int J Mol Sci. 2023. Vol. 24, N. 19. doi: 10.3390/ijms241914813

[81]

Koepple C, Pollmann L, Pollmann NS, et al. Microporous polylactic acid scaffolds enable fluorescence-based perfusion imaging of intrinsic in vivo vascularization. Int J Mol Sci. 2023;24(19). doi: 10.3390/ijms241914813

[82]

Kratzer S, Arkudas A, Himmler M, et al. Vascularization of poly-ε-caprolactone-collagen i-nanofibers with or without sacrificial fibers in the neurotized arteriovenous loop model. Cells. 2022;11(23). doi: 10.3390/cells11233774

[83]

Kratzer S., Arkudas A., Himmler M., et al. Vascularization of poly-ε-caprolactone-collagen i-nanofibers with or without sacrificial fibers in the neurotized arteriovenous loop model // Cells. 2022. Vol. 11, N. 23. doi: 10.3390/cells11233774

[84]

Kratzer S, Arkudas A, Himmler M, et al. Vascularization of poly-ε-caprolactone-collagen i-nanofibers with or without sacrificial fibers in the neurotized arteriovenous loop model. Cells. 2022;11(23). doi: 10.3390/cells11233774

[85]

Eweida A, Flechtenmacher S, Sandberg E, et al. Systemically injected bone marrow mononuclear cells specifically home to axially vascularized tissue engineering constructs. PLoS One. 2022;17(8). doi: 10.1371/journal.pone.0272697

[86]

Eweida A., Flechtenmacher S., Sandberg E., et al. Systemically injected bone marrow mononuclear cells specifically home to axially vascularized tissue engineering constructs // PLoS One. 2022. Vol. 17, N. 8. doi: 10.1371/journal.pone.0272697 2022

[87]

Eweida A, Flechtenmacher S, Sandberg E, et al. Systemically injected bone marrow mononuclear cells specifically home to axially vascularized tissue engineering constructs. PLoS One. 2022;17(8). doi: 10.1371/journal.pone.0272697

[88]

Vaghela R, Arkudas A, Gage D, et al. Microvascular development in the rat arteriovenous loop model in vivo – A step by step intravital microscopy analysis. J Biomed Mater Res A. 2022;110(9):1551–1563. doi: 10.1002/jbm.a.37395

[89]

Vaghela R., Arkudas A., Gage D., et al. Microvascular development in the rat arteriovenous loop model in vivo – a step by step intravital microscopy analysis // J Biomed Mater Res A. 2022. Vol. 110, N. 9. P. 1551–1563. doi: 10.1002/jbm.a.37395

[90]

Vaghela R, Arkudas A, Gage D, et al. Microvascular development in the rat arteriovenous loop model in vivo – A step by step intravital microscopy analysis. J Biomed Mater Res A. 2022;110(9):1551–1563. doi: 10.1002/jbm.a.37395

[91]

Kim BS, Chen SH, Vasella M, et al. In vivo evaluation of mechanically processed stromal vascular fraction in a chamber vascularized by an arteriovenous shunt. Pharmaceutics. 2022;14(2):417. doi: 10.3390/pharmaceutics14020417

[92]

Kim B.S., Chen S.H., Vasella M., et al. In vivo evaluation of mechanically processed stromal vascular fraction in a chamber vascularized by an arteriovenous shunt // Pharmaceutics. 2022. Vol. 14, N. 2. P. 417. doi: 10.3390/pharmaceutics14020417

[93]

Kim BS, Chen SH, Vasella M, et al. In vivo evaluation of mechanically processed stromal vascular fraction in a chamber vascularized by an arteriovenous shunt. Pharmaceutics. 2022;14(2):417. doi: 10.3390/pharmaceutics14020417

[94]

Yuan Q, Bleiziffer O, Boos AM, et al. PHDs inhibitor DMOG promotes the vascularization process in the AV loop by HIF-1a up-regulation and the preliminary discussion on its kinetics in rat. BMC Biotechnol. 2014;14:112. doi: 10.1186/s12896-014-0112-x

[95]

Yuan Q., Bleiziffer O., Boos A.M., et al. PHDs inhibitor DMOG promotes the vascularization process in the AV loop by HIF-1a up-regulation and the preliminary discussion on its kinetics in rat // BMC Biotechnol. 2014. Vol. 14, N. 1. P. 112. doi: 10.1186/s12896-014-0112-x

[96]

Yuan Q, Bleiziffer O, Boos AM, et al. PHDs inhibitor DMOG promotes the vascularization process in the AV loop by HIF-1a up-regulation and the preliminary discussion on its kinetics in rat. BMC Biotechnol. 2014;14:112. doi: 10.1186/s12896-014-0112-x

[97]

Biggemann J, Pezoldt M, Stumpf M, et al. Modular ceramic scaffolds for individual implants. Acta Biomater. 2018;80:390–400. doi: 10.1016/j.actbio.2018.09.008

[98]

Biggemann J., Pezoldt M., Stumpf M., et al. Modular ceramic scaffolds for individual implants // Acta Biomater. 2018. Vol. 80. P. 390–400. doi: 10.1016/j.actbio.2018.09.008 2018

[99]

Biggemann J, Pezoldt M, Stumpf M, et al. Modular ceramic scaffolds for individual implants. Acta Biomater. 2018;80:390–400. doi: 10.1016/j.actbio.2018.09.008

[100]

Kengelbach-Weigand A, Thielen C, Bäuerle T, et al. Personalized medicine for reconstruction of critical-size bone defects – a translational approach with customizable vascularized bone tissue. NPJ Regen Med. 2021;6(1):49. doi: 10.1038/s41536-021-00158-8

[101]

Kengelbach-Weigand A., Thielen C., Bäuerle T., et al. Personalized medicine for reconstruction of critical-size bone defects – a translational approach with customizable vascularized bone tissue // NPJ Regen Med. 2021. Vol. 6, N. 1. P. 49. doi: 10.1038/s41536-021-00158-8

[102]

Kengelbach-Weigand A, Thielen C, Bäuerle T, et al. Personalized medicine for reconstruction of critical-size bone defects – a translational approach with customizable vascularized bone tissue. NPJ Regen Med. 2021;6(1):49. doi: 10.1038/s41536-021-00158-8

[103]

Wu X, Wang Q, Kang N, et al. The effects of different vascular carrier patterns on the angiogenesis and osteogenesis of BMSC-TCP-based tissue-engineered bone in beagle dogs. J Tissue Eng Regen Med. 2017;11(2):542–552. doi: 10.1002/term.2076

[104]

Wu X., Wang Q., Kang N., et al. The effects of different vascular carrier patterns on the angiogenesis and osteogenesis of BMSC-TCP-based tissue-engineered bone in beagle dogs // J Tissue Eng Regen Med. 2017. Vol. 11, N. 2. P. 542–552. doi: 10.1002/term.2076

[105]

Wu X, Wang Q, Kang N, et al. The effects of different vascular carrier patterns on the angiogenesis and osteogenesis of BMSC-TCP-based tissue-engineered bone in beagle dogs. J Tissue Eng Regen Med. 2017;11(2):542–552. doi: 10.1002/term.2076

[106]

Yang YP, Gadomski BC, Bruyas A, et al. Investigation of a prevascularized bone graft for large defects in the ovine tibia. Tissue Eng Part A. 2021;27(23–24):1458–1469. doi: 10.1089/ten.TEA.2020.0347

[107]

Yang Y.P., Gadomski B.C., Bruyas A., et al. Investigation of a prevascularized bone graft for large defects in the ovine tibia // Tissue Eng Part A. 2021. Vol. 27, N. 23–24. P. 1458–1469. doi: 10.1089/ten.TEA.2020.0347

[108]

Yang YP, Gadomski BC, Bruyas A, et al. Investigation of a prevascularized bone graft for large defects in the ovine tibia. Tissue Eng Part A. 2021;27(23–24):1458–1469. doi: 10.1089/ten.TEA.2020.0347

[109]

Yang YP, Labus KM, Gadomski BC, et al. Osteoinductive 3D printed scaffold healed 5 cm segmental bone defects in the ovine metatarsus. Sci Rep. 2021;11(1). doi: 10.1038/s41598-021-86210-5

[110]

Yang Y.P., Labus K.M., Gadomski B.C., et al. Osteoinductive 3D printed scaffold healed 5 cm segmental bone defects in the ovine metatarsus // Sci Rep. 2021. Vol. 11, N. 1. P. 6704. doi: 10.1038/s41598-021-86210-5

[111]

Yang YP, Labus KM, Gadomski BC, et al. Osteoinductive 3D printed scaffold healed 5 cm segmental bone defects in the ovine metatarsus. Sci Rep. 2021;11(1). doi: 10.1038/s41598-021-86210-5

[112]

Vidal L, Brennan MÁ, Krissian S, et al. In situ production of pre-vascularized synthetic bone grafts for regenerating critical-sized defects in rabbits. Acta Biomater. 2020;114:384–394. doi: 10.1016/j.actbio.2020.07.030

[113]

Vidal L., Brennan M.Á., Krissian S., et al. In situ production of pre-vascularized synthetic bone grafts for regenerating critical-sized defects in rabbits // Acta Biomater. 2020. Vol. 114. P. 384–394. doi: 10.1016/j.actbio.2020.07.030

[114]

Vidal L, Brennan MÁ, Krissian S, et al. In situ production of pre-vascularized synthetic bone grafts for regenerating critical-sized defects in rabbits. Acta Biomater. 2020;114:384–394. doi: 10.1016/j.actbio.2020.07.030

[115]

Kawai T, Pan CC, Okuzu Y, et al. Combining a vascular bundle and 3D printed scaffold with BMP-2 improves bone repair and angiogenesis. Tissue Eng Part A. 2021;27(23–24):1517–1525. doi: 10.1089/ten.TEA.2021.0049

[116]

Kawai T., Pan C.C., Okuzu Y., et al. Combining a vascular bundle and 3D printed scaffold with bmp-2 improves bone repair and angiogenesis // Tissue Eng Part A. 2021. Vol. 27, N. 23–24. P. 1517–1525. doi: 10.1089/ten.TEA.2021.0049

[117]

Kawai T, Pan CC, Okuzu Y, et al. Combining a vascular bundle and 3D printed scaffold with BMP-2 improves bone repair and angiogenesis. Tissue Eng Part A. 2021;27(23–24):1517–1525. doi: 10.1089/ten.TEA.2021.0049

AI Summary AI Mindmap
PDF (732KB)

90

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/