Comparative evaluation of contusion spinal cord injury models from ventral and dorsal approaches in rabbits in an experiment

Anton S. Shabunin , Margarita V. Savina , Timofey S. Rybinskikh , Anna D. Dreval , Vladislav D. Safarov , Platon А. Safonov , Andrey M. Fedyuk , Daria A. Sitovskaia , Nikita M. Dyachuk , Alexandra S. Baidikova , Lidia S. Konkova , Olga L. Vlasova , Sergei V. Vissarionov

Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2023, Vol. 11 ›› Issue (4) : 487 -500.

PDF (2717KB)
Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2023, Vol. 11 ›› Issue (4) : 487 -500. DOI: 10.17816/PTORS568295
Experimental and theoretical research
research-article

Comparative evaluation of contusion spinal cord injury models from ventral and dorsal approaches in rabbits in an experiment

Author information +
History +
PDF (2717KB)

Abstract

BACKGROUND: Contemporary experimental models for spinal cord injury studies are mainly based on spinal cord injury in rats and mice. Modeling of experimental spinal cord injuries is generally performed from the dorsal approach, which excludes its injury as a result of compression by the fragments of the fractured vertebral body and significantly restricts the application of the results obtained from clinical practice.

AIM: To develop and create contusional spinal cord injury model from the ventral approach with its subsequent comparison with the contusional spinal cord injury model from the dorsal approach.

MATERIALS AND METHODS: The study examined 20 female Soviet Chinchilla rabbits weighing 3.5–4.5 kg. The rabbits were subjected to standardized spinal cord injuries from the ventral and dorsal approaches at the LII level. Somatosensory- and motor-evoked potentials, H-reflex, were recorded in all experimental animals before injury, immediately after, and 3 and 8 h after injury. Histological studies were also performed using qualitative and semiquantitative analyses of biopsy samples of damaged areas and assessing the number of dystrophic neurons over time. The results of neurophysiological and histological examinations of the spinal cord in cases of ventral and dorsal trauma were statistically processed.

RESULTS: When modeling spinal cord injury from the ventral approach, in comparison with the model from the dorsal approach, more significant damage is detected. As a result of the injury factor, the dysfunction of both neurons at the traumatization level and peripheral neurons below the injury zone was revealed; however, as histological examinations have shown, in contrast to the dorsal approach, mild hemorrhage was observed in the ventral approach.

CONCLUSIONS: The results obtained indicate a more significant and strict contusion mechanism of the spinal cord injury model from the ventral approach and the maximum proximity of the resulting model in a clinical situation. In the future, the experimental model of the contusional spinal cord injury in a laboratory animal can be used in chronic experiments.

Keywords

spinal cord injury / contusion spinal cord injury / rabbit / model

Cite this article

Download citation ▾
Anton S. Shabunin, Margarita V. Savina, Timofey S. Rybinskikh, Anna D. Dreval, Vladislav D. Safarov, Platon А. Safonov, Andrey M. Fedyuk, Daria A. Sitovskaia, Nikita M. Dyachuk, Alexandra S. Baidikova, Lidia S. Konkova, Olga L. Vlasova, Sergei V. Vissarionov. Comparative evaluation of contusion spinal cord injury models from ventral and dorsal approaches in rabbits in an experiment. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery, 2023, 11(4): 487-500 DOI:10.17816/PTORS568295

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 2019;10:282. DOI: 10.3389/fneur.2019.00282

[2]

Alizadeh A., Dyck S.M., Karimi-Abdolrezaee S. Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms // Front. Neurol. 2019. Vol. 10. P. 282. DOI: 10.3389/fneur.2019.00282

[3]

Tator CH. Review of treatment trials in human spinal cord injury: issues, difficulties, and recommendations. Neurosurgery. 2006;59(5):957–982. DOI: 10.1227/01.NEU.0000245591.16087.89

[4]

Tator C.H. Review of treatment trials in humanspinal cord injury: issues, difficulties, and recommendations // Neurosurgery. 2006. Vol. 59. No. 5. P. 957–982. DOI: 10.1227/01.NEU.0000245591.16087.89

[5]

Verstappen K, Aquarius R, Klymov A, et al. Systematic evaluation of spinal cord injury animal models in the field of biomaterials. Tissue Eng Part B Rev. 2022;28(6):1169–1179. DOI: 10.1089/ten.TEB.2021.0194

[6]

Verstappen K., Aquarius R., Klymov A., et al. Systematic evaluation of spinal cord injury animal models in the field of biomaterials // Tissue Eng. Part B Rev. 2022. Vol. 28. No. 6. P. 1169–1179. DOI: 10.1089/ten.TEB.2021.0194

[7]

Sharif-Alhoseini M, Khormali M, Rezaei M, et al. Animal models of spinal cord injury: a systematic review. Spinal Cord. 2017;55(8):714–721. DOI: 10.1038/sc.2016.187

[8]

Sharif-Alhoseini M., Khormali M., Rezaei M., et al. Animal models of spinal cord injury: a systematic review // Spinal Cord. 2017. Vol. 55. No. 8. P. 714–721. DOI: 10.1038/sc.2016.187

[9]

Li JJ, Liu H, Zhu Y, et al. Animal models for treating spinal cord injury using biomaterials-based tissue engineering strategies. Tissue Eng Part B Rev. 2022;28(1):79–100. DOI: 10.1089/ten.TEB.2020.0267

[10]

Li J.J., Liu H., Zhu Y., et al. Animal models for treating spinal cord injury using biomaterials-based tissue engineering strategies // Tissue Eng. Part B Rev. 2022. Vol. 28. No. 6. P. 79–100. DOI: 10.1089/ten.TEB.2020.0267

[11]

Vissarionov SV, Rybinskikh TS, Asadulaev MS, et al. Modeling spinal cord injuries: advantages and disadvantages. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2020;8(4):485–494. (In Russ.) DOI: 10.17816/PTORS34638

[12]

Виссарионов С.В., Рыбинских Т.С., Асадулаев М.С., и др. Моделирование повреждений спинного мозга: достигнутые успехи и недостатки // Ортопедия, травматология и восстановительная хирургия детского возраста. 2020. Т. 8. № 4. C. 485–494. DOI: 10.17816/PTORS34638

[13]

Kjell J, Olson L. Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech. 2016;9(10):1125–1137. DOI: 10.1242/dmm.025833

[14]

Kjell J., Olson L. Rat models of spinal cord injury: from pathology to potential therapies // Dis. Model. Mech. 2016. Vol. 9. No. 10. P. 1125–1137. DOI: 10.1242/dmm.025833

[15]

Ballermann M, Fouad K. Spontaneous locomotor recovery in spinal cord injured rats is accompanied by anatomical plasticity of reticulospinal fibers. Eur J Neurosci. 2006;23(8):1988–1996. DOI: 10.1111/j.1460-9568.2006.04726.x

[16]

Ballermann M., Fouad K. Spontaneous locomotor recovery in spinal cord injured rats is accompanied by anatomical plasticity of reticulospinal fibers // Eur. J. Neurosci. 2006. Vol. 23. No. 8. P. 1988–1996. DOI: 10.1111/j.1460-9568.2006.04726.x

[17]

Hiraizumi Y, Fujimaki E, Tachikawa T. Long-term morphology of spastic or flaccid muscles in spinal cord-transected rabbits. Clin Orthop Relat Res. 1990;(260):287–296.

[18]

Hiraizumi Y., Fujimaki E., Tachikawa T. Long-term morphology of spastic or flaccid muscles in spinal cord-transected rabbits // Clin. Orthop. Relat. Res. 1990. Vol. 260. P. 287–297.

[19]

Greenaway JB, Partlow GD, Gonsholt NL, et al. Anatomy of the lumbosacral spinal cord in rabbits. J Am Anim Hosp Assoc. 2001;37(1):27–34. DOI: 10.5326/15473317-37-1-27

[20]

Greenaway J.B., Partlow G.D., Gonsholt N.L., et al. Anatomy of the lumbosacral spinal cord in rabbits // J. Am. Anim. Hosp. Assoc. 2001. Vol. 37. No. 1. P. 27–34. DOI: 10.5326/15473317-37-1-27

[21]

Mazensky D, Flesarova S, Sulla I. Arterial blood supply to the spinal cord in animal models of spinal cord injury. A Review. Anat Rec (Hoboken). 2017;300(12):2091–2106. DOI: 10.1002/ar.23694

[22]

Mazensky D., Flesarova S., Sulla I. Arterial blood supply to the spinal cord in animal models of spinal cord injury. A review // Anat. Rec. (Hoboken). 2017. Vol. 300. No. 12. P. 2091–2106. DOI: 10.1002/ar.23694

[23]

Vink R, Noble LJ, Knoblach SM, et al. Metabolic changes in rabbit spinal cord after trauma: magnetic resonance spectroscopy studies. Ann Neurol. 1989;25(1):26–31. DOI: 10.1002/ana.410250105

[24]

Vink R., Noble L.J., Knoblach S.M., et al. Metabolic changes in rabbit spinal cord after trauma: Magnetic resonance spectroscopy studies // Ann. Neurol. 1989. Vol. 25. No. 1. P. 26–31. DOI: 10.1002/ana.410250105

[25]

Sung DH, Lee KM, Chung SH, et al. Change of stretch reflex in spinal cord injured rabbit: experimental spasticity model duk. Journal of the Korean Academy of Rehabilitation Medicine. 2002;26(1):37–45.

[26]

Sung D.H., Lee K.M., Chung S.H., et al. Change of Stretch reflex in spinal cord injured rabbit: experimental spasticity model duk // Journal of the Korean Academy of Rehabilitation Medicine. 2002. Vol. 26. No. 1. P. 37–45.

[27]

Shek JW, Wen GY, Wisniewski HM. Atlas of the rabbit brain and spinal cord. Karger Basel; 1986.

[28]

Shek J.W., Wen G.Y., Wisniewski H.M. Atlas of the rabbit brain and spinal cord. Karger Basel, 1986.

[29]

Patent RF na izobretenie No. 2021124504 / 16.08.2021. Vissarionov SV, Rybinskikh TS, Asadulaev MS. Sposob modelirovaniya travmaticheskogo povrezhdeniya spinnogo mozga iz ventral’nogo dostupa v poyasnichnom otdele pozvonochnika. (In Russ.) [cited 2023 Nov 4]. Available from: https://i.moscow/patents/ru2768486c1_20220324

[30]

Патент РФ на изобретение № 2021124504 / 16.08.2021. Виссарионов С.В., Рыбинских Т.С., Асадулаев М.С. Способ моделирования травматического повреждения спинного мозга из вентрального доступа в поясничном отделе позвоночника [дата обращения 04.11.2023]. Доступ по ссылке: https://i.moscow/patents/ru2768486c1_20220324

[31]

Mazensky D, Danko J, Petrovova E, et al. Arterial peculiarities of the thoracolumbar spinal cord in rabbit. Anat Histol Embryol. 2014;43(5):346–351. DOI: 10.1111/ahe.12081

[32]

Mazensky D., Danko J., Petrovova E., et al. Arterial peculiarities of the thoracolumbar spinal cord in rabbit // Anat. Histol. Embryol. 2014. Vol. 43. No. 5. P. 346–351. DOI: 10.1111/ahe.12081

[33]

Mazensky D, Petrovova E, Danko J. The anatomical correlation between the internal venous vertebral system and the cranial venae cavae in rabbit. Anat Res Int. 2013;2013. DOI: 10.1155/2013/204027

[34]

Mazensky D., Petrovova E., Danko J. The anatomical correlation between the internal venous vertebral system and the cranial venae cavae in rabbit // Anat. Res. Int. 2013. Vol. 2013. P. 1–4. DOI: 10.1155/2013/204027

[35]

Turan E, Ünsal C, Üner AG. H-reflex and M-wave studies in the fore- and hindlimbs of rabbit. Turkish J Vet Anim Sci. 2013;37(5):559–563. DOI: 10.3906/vet-1210-27

[36]

Turan E., Ünsal C., Üner A.G. H-reflex and M-wave studies in the fore- and hindlimbs of rabbit // Turkish J. Vet. Anim. Sci. 2013. Vol. 37. No. 5. P. 559–563. DOI: 10.3906/vet-1210-27

[37]

Gnezditskii VV, Korepina OS. Atlas po vyzvannym potentsialam mozga (prakticheskoe rukovodstvo, osnovannoe na analize konkretnykh klinicheskikh nablyudenii). Ivanovo: PresSto; 2011. (In Russ.)

[38]

Гнездицкий В.В., Корепина О.С. Атлас по вызванным потенциалам мозга (практическое руководство, основанное на анализе конкретных клинических наблюдений). Иваново: ПресСто, 2011. 532 с.

AI Summary AI Mindmap
PDF (2717KB)

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/