Assessment of the serum concentration of growth factors and the informativeness of ultrasonography in studying the structural conditions of the osteoarticular system in children with type III osteogenesis imperfecta

Svetlana N. Luneva , Tatyana I. Menshchikova , Anna M. Aranovich , Evgeniia P. Vykhovanets , Kseniya P. Matveeva

Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2023, Vol. 11 ›› Issue (4) : 449 -459.

PDF (740KB)
Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2023, Vol. 11 ›› Issue (4) : 449 -459. DOI: 10.17816/PTORS529677
Clinical studies
research-article

Assessment of the serum concentration of growth factors and the informativeness of ultrasonography in studying the structural conditions of the osteoarticular system in children with type III osteogenesis imperfecta

Author information +
History +
PDF (740KB)

Abstract

BACKGROUND: The treatment of patients with osteogenesis imperfecta requires dynamic monitoring of the structural state and metabolism of the long bones. In the available literature, practically no data are available on the use of ultrasonography to assess the skeletal system in children with osteogenesis imperfecta. Increased expression of the members of the transforming growth factor-β superfamily in the serum has been described in several congenital bone diseases; however, this has not yet been examined in children with type III osteogenesis imperfecta.

AIM: To examine the serum concentrations of growth factors in children with type III osteogenesis imperfecta relative to healthy children and evaluate the informativeness of ultrasonography for assessing the state of the osteoarticular system in type III osteogenesis imperfecta and justify the feasibility of its use in this pathology.

MATERIALS AND METHODS: Children aged 3–7 years with type III osteogenesis imperfecta (= 12) were examined. In the blood serum, bone-mineral metabolism parameters were determined on a Hitachi/BM 902 analyzer (Japan), and the contents of growth factors and their receptors were determined by enzyme-linked immunosorbent assay on a Thermo Fisher Scientific analyzer (USA). Ultrasound examinations were performed using an AVISUS Hitachi device (Japan). Statistical processing was carried out using the Attestat program (I.P. Gaidyshev). Quantitative data are presented as medians and quartiles (Me [Q1; Q3]) for samples with non-normal distribution. In cases with normal distribution, quantitative data are presented as M ± σ, p < 0.05.

RESULTS: In patients with osteogenesis imperfecta, the degree of bone tissue mineralization and bone turnover rates were higher and the collagen content was lower than those of their healthy peers. Fibroblast growth factor-basic underwent the greatest changes; a decrease in the content of the vascular endothelial growth factor (VEGF)-R3 receptor was accompanied by multiple increases in VEGF and VEGF-R2. Ultrasonography identified areas of deformation and multiple fractures in the area of the diaphyses and metaphyses of the femur, tibia, hip, and knee joints.

CONCLUSIONS: Predominance was noted toward the production of growth factors responsible for the activation of osteoclastogenesis. The content of growth factors responsible for osteoclast inhibition and osteoblast activation is normal or slightly changed. Ultrasonography has demonstrated high informativeness in a detailed assessment of the osteoarticular system in patients with osteogenesis imperfecta, which allows us to recommend this noninvasive technique for wider use in this disease.

Keywords

osteogenesis imperfecta type III / growth factors of osteotropic hormones / bone ultrasound

Cite this article

Download citation ▾
Svetlana N. Luneva, Tatyana I. Menshchikova, Anna M. Aranovich, Evgeniia P. Vykhovanets, Kseniya P. Matveeva. Assessment of the serum concentration of growth factors and the informativeness of ultrasonography in studying the structural conditions of the osteoarticular system in children with type III osteogenesis imperfecta. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery, 2023, 11(4): 449-459 DOI:10.17816/PTORS529677

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Grebennikova TA, Gavrilova O, Tiulpakov AN, et al. First description of a type V osteogenesis imperfecta clinical case with severe skeletal deformities caused by a mutation p.119C> T in IFITM5 gene in Russia. Osteoporosis and Bone Diseases. 2019;22(2):32–37. (In Russ.) DOI: 10.14341/osteo12103

[2]

Гребенникова Т.А., Гаврилова А.О., Тюльпаков А.Н., и др. Первое в России описание клинического случая несовершенного остеогенеза V типа с тяжелыми деформациями скелета, обусловленного мутацией с.119с>t в гене IFITM5 // Остеопороз и остеопатии. 2019. Т. 25. № 2019. С. 32–37. DOI: 10.14341/osteo12103

[3]

Land C, Rauch F, Montpetit K, et al. Effect of intravenous pamidronate therapy on functional abilities and level of ambulation in children with osteogenesis imperfect. J Pediatr. 2006;148(4):456–460. DOI: 10.1016/j.jpeds.2005.10.041

[4]

Land C., Rauch F., Montpetit K., et al. Effect of intravenous pamidronate therapy on functional abilities and level of ambulation in children with osteogenesis imperfecta // J. Pediatr. 2006. Vol. 148. No. 4. P. 456–460. DOI: 10.1016/j.jpeds.2005.10.041

[5]

Malygina AA, Grebennikova TA, Tiulpakov AN, et al. Osteogenesis imperfecta as a cause of death. Osteoporosis and Bone Diseases. 2018;21(1):23–27. (In Russ.) DOI: 10.14341/osteo9733

[6]

Малыгина А.А., Гребенникова Т.А., Тюльпаков А.Н., и др. Несовершенный остеогенез как причина летального исхода // Остеопороз и остеопатии. 2018. Т. 21. № 1. С. 23–27. DOI: 10.14341/osteo9733

[7]

Glorieux FH. Osteogenesis imperfecta. Best Pract Res Clin Rheumatol. 2008;22(1):85–100. DOI: 10.1016/j.berh.2007.12.012

[8]

Glorieux F.H. Osteogenesis imperfecta // Best Pract. Res. Clin. Rheum. 2008. Vol. 22. No. 1. P. 85–100. DOI: 10.1016/j.berh.2007.12.012

[9]

Michell C, Patel V, Amirfeyz R, et al. Osteogenesis imperfecta. Curr Orthop. 2007;21(3):236–241. DOI: 10.1016/j.cuor.2007.04.003

[10]

Michell C., Patel V., Amirfeyz R., et al. Osteogenesis imperfecta // Curr. Orthop. 2007. Vol. 21. No. 3. P. 236–241. DOI: 10.1016/j.cuor.2007.04.003

[11]

Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfect. J Med Genet. 1979;16(2):101–116. DOI: 10.1136/jmg.16.2.101

[12]

Sillence D.O., Senn A., Danks D.M. Genetic heterogeneity in osteogenesis imperfecta // J. Med. Genet. 1979. Vol. 16. No. 2. P. 101–116. DOI: 10.1136/jmg.16.2.101

[13]

Ignatovich ON, Namazova-Baranova LS, Мargieva ТV, et al. Osteogenesis imperfecta: diagnostic feature. Pediatric Pharmacology. 2018;15(3):224–232. (In Russ.) DOI: 10.15690/pf.v15i3.1902

[14]

Игнатович О.Н., Намазова-Баранова Л.С., Маргиева Т.В., и др. Несовершенный остеогенез: особенности диагностики // Педиатрическая фармакология. 2018. Т. 15. № 3. С. 224–232. DOI: 10.15690/pf.v15i3.1902

[15]

Rossi V, Lee B, Marom R. Osteogenesis imperfecta: advancements in genetics and treatment. Curr Opin Pediatr. 2019;31(6):708–715. DOI: 10.1097/MOP.0000000000000813

[16]

Rossi V., Lee B., Marom R. Osteogenesis imperfecta: advancements in genetics and treatment // Curr. Opin. Pediatr. 2019. Vol. 31. No. 6. P. 708–715. DOI: 10.1097/MOP.0000000000000813

[17]

Popkov AV, Karlov AV, Korkin AYa, et al. The outlooks of pathogenetic treatment of patients with the imperfect osteogenesis using elements of nano-technologies. Genij Ortopedii. 2009;(1):70–74. (In Russ.)

[18]

Попков А.В., Карлов А.В., Коркин А.Я., и др. Перспективы патогенетического лечения больных с несовершенным остеогенезом с использованием элементов нанотехнологий // Гений ортопедии. 2009. № 1. С. 70–74.

[19]

Polyakova EYu, Shcheplyagina LA. Effect of bisphosphonate therapy on skeletal mineralization and body composition in children with osteogenesis imperfecta. Osteoporosis and Bone Diseases. 2020;23(2):130. (In Russ.)

[20]

Полякова Е.Ю., Щеплягина Л.А. Влияние терапии бисфосфонатами на минерализацию скелета и композиционный состав тела у детей с несовершенным остеогенезом // Остеопороз и остеопатии. 2020. Т. 23. № 2. С. 130.

[21]

Karlov AV, Saprina TV, Kirillova NA, et al. Some clinical and pathophysiological problems and prospects of osteopenia surgical correction in patients with osteogenesis imperfect. Genij Ortopedii. 2008;(4):84–88. (In Russ.)

[22]

Карлов А.В., Саприна Т.В., Кириллова Н.А., и др. Некоторые клинические и патофизиологические вопросы и перспективы хирургической коррекции остеопении у пациентов с несовершенным остеогенезом // Гений ортопедии. 2008. № 4. С. 84–88.

[23]

Onopriyenko GA, Voloshin VP. Сurrent concepts in physiological and reparative osteogenesis. Al’manakh klinicheskoy meditsiny. 2017;45(2):79–93. (In Russ.) DOI: 10.18786/2072-0505-2017-45-2-79-93

[24]

Оноприенко Г.А., Волошин В.П. Современные концепции процессов физиологического и репаративного остеогенеза // Альманах клинической медицины. 2017. Т. 45. № 2. С. 79–93. DOI: 10.18786/2072-0505-2017-45-2-79-93

[25]

Menshchikova TI, Menshchikov IN, Mal’tseva LV, et al. Specific characteristics of ultrasound diagnosing of primary and secondary coxarthrosis. Russian Electronic Journal of Radiology. 2019;9(1):75–88. (In Russ.) DOI: 10.21569/2222-7415-2019-9-1-75-88

[26]

Менщикова Т.И., Менщиков И.Н., Мальцева Л.В., и др. Ультразвуковые критерии диагностики различных стадий первичного и вторичного коксартроза // Российский электронный журнал лучевой диагностики. 2019. Т. 9. № 1. С. 75–88. DOI: 10.21569/2222-7415-2019-9-1-75-88

[27]

Neretin AS, Menshchikova TI. Value of ultrasonography and radiography for the study of bone regeneration in lengthening of the fourth ray in brachymetatarsia. Foot Ankle Surg. 2021;27(4):432–438. DOI: 10.1016/j.fas.2020.05.013

[28]

Neretin A.S., Menshchikova T.I. Value of ultrasonography and radiography for the study of bone regeneration in lengthening of the fourth ray in brachymetatarsia // Foot Ankle Surg. 2021. Vol. 27. No. 4. P. 432–438. DOI: 10.1016/j.fas.2020.05.013

[29]

Menschikova T, Aranovich A. Tibial lengthening in achondroplasia patients aged 6–9 years as the first stage of growth correction. Genij Ortopedii. 2021;27(3):366–371. DOI: 10.18019/1028-4427-2021-27-3-366-371

[30]

Меншикова Т.И., Аранович А.М. Удлинение голеней у больных ахондроплазией 6–9 лет как первый этап коррекции роста // Гений ортопедии. 2021. Т. 27. № 3. С. 366–371. DOI: 10.18019/1028-4427-2021-27-3-366-371

[31]

Palomo T, Vilaça T, Lazaretti-Castro M. Osteogenesis imperfecta: diagnosis and treatment. Curr Opin Endocrinol Diabetes Obes. 2017;24(6):381–388. DOI: 10.1097/MED.0000000000000367

[32]

Palomo T., Vilaça T., Lazaretti-Castro M. Osteogenesis imperfecta: diagnosis and treatment // Curr. Opin. Endocrinol. Diabetes Obes. 2017. Vol. 24. No. 6. P. 381–388. DOI: 10.1097/MED.0000000000000367

[33]

Teng RJ, Wu TJ, Hsieh FJ. Cord blood level of insulin-like growth factor-1 and IGF binding protein-3 in monochorionic twins. J Formos Med Assoc. 2015;114(4):359–362. DOI: 10.1016/j.jfma.2012.12.014

[34]

Teng R.J., Wu T.J., Hsieh F.J. Cord blood level of insulin-like growth factor-1 and IGF binding protein-3 in monochorionic twins // J. Formos Med. Assoc. 2015. Vol. 114. P. 359–362. DOI: 10.1016/j.jfma.2012.12.014

[35]

Trejo P, Rauch F. Osteogenesis imperfecta in children and adolescents-new developments in diagnosis and treatment. Osteoporos Int. 2016;27(12):3427–3437. DOI: 10.1007/s00198-016-3723-3

[36]

Trejo P., Rauch F. Osteogenesis imperfecta in children and adolescents-new developments in diagnosis and treatment // Osteoporos Int. 2016. Vol. 27. No. 12. P. 3427–3437. DOI: 10.1007/s00198-016-3723-3

[37]

Glants S. Mediko-biologicheskaya statistika. Moscow: Praktika; 1998. (In Russ.)

[38]

Гланц С. Медико-биологическая статистика. Москва: Практика, 1998. 459 с.

[39]

Vasikaran S, Cooper C, Eastell R, et al. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med. 2011;49(8):1271–1274. DOI: 10.1515/CCLM.2011.602

[40]

Vasikaran S., Cooper C., Eastell R., et al. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis // Clin. Chem. Lab. Med. 2011. Vol. 49. No. 8. P. 1271–1274. DOI: 10.1515/CCLM.2011.602

[41]

Hofbauer LC, Kühne CA, Viereck V. The OPG/RANKL/RANK system in metabolic bone diseases. J Musculoskelet Neuronal Interact. 2004;4(3):268–275.

[42]

Hofbauer L., Kuhne C., Viereck V. The OPG/RANKL/RANK system in metabolic bone disease // J. Musculoskel. Neuron. Interact. 2004.Vol. 4. No. 3. P. 268–275.

[43]

Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4. DOI: 10.1038/boneres.2016.9

[44]

Wu M., Chen G., Li Y.P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease // Bone Res. 2016. Vol. 4. DOI: 10.1038/boneres.2016.9

[45]

Gebken J, Brenner R, Feydt A, et al. Increased cell surface expression of receptors for transforming growth factor-beta on osteoblasts from patients with osteogenesis imperfecta. Pathobiology. 2000;68(3):106–112. DOI: 10.1159/000055910

[46]

Gebken J., Brenner R., Feydt A., et al. Increased cell surface expression of receptors for transforming growth factor-β on osteoblasts from patients with osteogenesis imperfect // Pathobiology. 2000. Vol. 68. No. 3. P. 106–112. DOI: 10.1159/000055910

[47]

Ivanter EV, Korsov AV. Elementarnaya biometriya: uchebnoe posobie. Petrozavodsk: PetrGU; 2013. (In Russ.)

[48]

Ивантер Э.В., Корсов А.В. Элементарная биометрия: учебное пособие. Петрозаводск: ПетрГУ, 2013. 110 с.

[49]

Cho TJ, Ko JM, Kim H, et al. Management of osteogenesis imperfecta: a multidisciplinary comprehensive approach. Clin Orthop Surg. 2020;12(4):417–429. DOI: 10.4055/cios20060

[50]

Cho T.J., Ko J.M., Kim H., et al. Management of osteogenesis imperfecta: a multidisciplinary comprehensive approach // Clin. Orthop. Surg. 2020. Vol. 12. No. 4. P. 417–429. DOI: 10.4055/cios20060

[51]

Kivirikko KI. Collagens and their abnormalities in a wide spectrum of diseases. Ann Med. 1993;25(2):113–126. DOI: 10.3109/07853899309164153

[52]

Kivirikko K.I. Collagens and their abnormalities in a wide spectrum of diseases // Ann Med. 1993. Vol. 25. No. 2. P. 113–126. DOI: 10.3109/07853899309164153

[53]

Byers PH, Steiner RD. Osteogenesis imperfecta. Annu Rev Med. 1992;43:269–282. DOI: 10.1146/annurev.me.43.020192.001413

[54]

Byers P.H., Steiner R.D. Osteogenesis imperfecta // Annu Rev. Med. 1992. Vol. 43. P. 269–282. DOI: 10.1146/annurev.me.43.020192.001413

[55]

Prockop DJ. Mutations that alter the primary structure of type I collagen. The perils of a system for generating large structures by the principle of nucleated growth. J Biol Chem. 1990;265(26):15349–15352.

[56]

Prockop D.J. Mutations that alter the primary structure of type I collagen. The perils of a system for generating large structures by the principle of nucleated growth // J. Biol. Chem. 1990. Vol. 265. No. 26. P. 15349–15352.

[57]

Shevtsov VI, Popkov DA, Desyatnichenko KS, et al. Biochemical markers of osteogenesis activity during femoral elongation in automatic mode of high division. Genij Ortopedii. 1999;(1):35–39. (In Russ.)

[58]

Шевцов В.И., Попков Д.А., Десятниченко К.С., и др. Биохимические маркеры активности костеобразования при удлинении бедра в высокодробном автоматическом режиме // Гений ортопедии. № 1. 1999. С. 35–39.

[59]

Landis WJ, Song MJ, Leith A, et al. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol. 1993;110(1):39–54. DOI: 10.1006/jsbi.1993.1003

[60]

Landis W.J., Song M.J., Leith A., et al. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction // J. Struct. Biol. 1993. Vol. 110. No. 1. P. 39–54. DOI: 10.1006/jsbi.1993.1003

[61]

Fratzl-Zelman N, Schmidt I, Roschger P, et al. Mineral particle size in children with osteogenesis imperfecta type I is not increased independently of specific collagen mutations. Bone. 2014;60:122–128. DOI: 10.1016/j.bone.2013.11.023

[62]

Fratzl-Zelman N., Schmidt I., Roschger P., et al. Mineral particle size in children with osteogenesis imperfecta type I is not increased independently of specific collagen mutations // Bone. 2014. Vol. 60. P. 122–128. DOI: 10.1016/j.bone.2013.11.023

[63]

Cortés Blanco A, Labarta Aizpún JI, Ferrández Longás A, et al. Valores de referencia de IGF-I, IGFBP-1, IGFBP-3 y osteocalcina en niños sanos zaragozanos [Reference values for IGF-I, IGFBP-1, IGFBP-3 and osteocalcin in healthy children in Zaragoza]. An Esp Pediatr. 1999;51(2):167–174. (In Span.)

[64]

Cortés Blanco A., Labarta Aizpún J.I., Ferrández Longás A. Reference values for IGF-I, IGFBP-1, IGFBP-3 and osteocalcin in healthy children in Zaragoza // An. Esp. Pediatr. 1999. Vol. 51. No. 2. P. 167–174.

[65]

Loffredo FS, Steinhauser ML, Jay SM, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013;53(4):828–839. DOI: 10.1016/j.cell.2013.04.015

[66]

Loffredo F.S., Steinhauser M.L., Jay S.M., et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy // Cell. 2013. Vol. 53. No. 4. P. 828–839. DOI: 10.1016/j.cell.2013.04.015

[67]

Erickson CB, Payne KA. inductive signals and progenitor fates during osteogenesis. In: Encyclopedia of tissue and regenerative medicine. Ed. by R.L. Reis. 2019. P. 395–404.

[68]

Erickson CB, Payne KA. Inductive signals and progenitor fates during osteogenesis // Encyclopedia of tissue and regenerative medicine. Ed. by R.L. Reis. 2019. Vol. 2. P. 395–404.

[69]

Popkov DA, Ryabykh SO. Osteogenesis Imperfecta from diagnosis to treatment. Nova Science Pub. Inc.; 2022. DOI: 10.52305/BNDY1848

[70]

Popkov D.A., Ryabykh S.O. Osteogenesis Imperfecta from diagnosis to treatment. Nova Science Pub Inc., 2022. 287 p. DOI: 10.52305/BNDY1848

AI Summary AI Mindmap
PDF (740KB)

75

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/