Neurogenic heterotopic ossification: A review. Part 1

Alina M. Khodorovskaya , Vladimir A. Novikov , Valery V. Umnov , Alexey V. Zvozil , Evgenii V. Melchenko , Dmitriy V. Umnov , Dmitriy S. Zharkov , Olga V. Barlova , Elizaveta A. Krasulnikova , Fedor A. Zakharov

Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2023, Vol. 11 ›› Issue (3) : 393 -404.

PDF (557KB)
Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2023, Vol. 11 ›› Issue (3) : 393 -404. DOI: 10.17816/PTORS453731
Scientific reviews
review-article

Neurogenic heterotopic ossification: A review. Part 1

Author information +
History +
PDF (557KB)

Abstract

BACKGROUND: Heterotopic ossification is the formation of bone tissues in the soft tissues of the body. A distinct form of heterotopic ossification is neurogenic, that is, resulting from severe injury to the brain or spinal cord of different genesis. Neurogenic heterotopic ossification is a complex multifactorial process of differentiated bone formation in the paraarticular soft tissues of large joints. Heterotopic ossification leads to the formation of persistent contractures and ankylosis, which cause severe disability and complicate rehabilitation.

AIM: To analyze publications dealing with various aspects of neurogenic heterotopic ossification.

MATERIALS AND METHODS: In the first part of our review, we present the results of the literature analysis on the epidemiology, risk factors, pathogenesis, and clinic and laboratory diagnosis of neurogenic heterotopic ossification. Scientific literature databases PubMed, Google Scholar, Cochrane Library, Crossref, and eLibrary were searched for without language limitations.

RESULTS: Current literature data on heterotopic ossification in patients with central nervous system pathologies are presented. Topical questions of etiology, risk factors, pathogenesis, and clinic and laboratory diagnostics of this pathological process are highlighted.

CONCLUSIONS: Understanding the risk factors of heterotopic ossification development and their prevention in the context of the modern knowledge of heterotopic ossification pathogenesis may help reduce the incidence of heterotopic ossification in patients with severe central nervous system injury.

Keywords

neurogenic heterotopic ossification / heterotopic osteogenesis / spinal cord injury / cerebral trauma

Cite this article

Download citation ▾
Alina M. Khodorovskaya, Vladimir A. Novikov, Valery V. Umnov, Alexey V. Zvozil, Evgenii V. Melchenko, Dmitriy V. Umnov, Dmitriy S. Zharkov, Olga V. Barlova, Elizaveta A. Krasulnikova, Fedor A. Zakharov. Neurogenic heterotopic ossification: A review. Part 1. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery, 2023, 11(3): 393-404 DOI:10.17816/PTORS453731

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zaytsev AY, Bryukhovetsky AS. Neuroregenerative therapy of spinal cord trauma: role and perspectives of stem cells transplantation. Genes & Cells. 2007;2(1):36–44. (In Russ.)

[2]

Деев Р.В., Берсенев А.В. Роль стволовых стромальных (мезенхимальных) клеток в формировании гетеротопических оссификатов // Клеточная трансплантология и тканевая инженерия. 2005. Т. 1. С. 46–48.

[3]

Sullivan MP, Torres SJ, Mehta S, et al. Heterotopic ossification after central nervous system trauma: a current review. Bone Joint Res. 2013;2(3):51–57. DOI: 10.1302/2046-3758.23.2000152

[4]

Sullivan M.P., Torres S.J., Mehta S., et al. Heterotopic ossification after central nervous system trauma: a current review // Bone Joint Res. 2013. Vol. 2. No. 3. P. 51–57. DOI: 10.1302/2046-3758.23.2000152

[5]

Meyers C, Lisiecki J, Miller S, et al. Heterotopic ossification: a comprehensive review. JBMR Plus. 2019;3(4). DOI: 10.1002/jbm4.10172

[6]

Meyers C., Lisiecki J., Miller S., et al. Heterotopic ossification: a comprehensive review // JBMR Plus. 2019. Vol. 3. No. 4. DOI: 10.1002/jbm4.10172

[7]

Deev RV, Plaksa IL, Baranich AV, et al. Osteogenesis in epitelial tumors on the example of a pilomatricomas. Genes & Cells. 2020;15(1):60–65. (In Russ.) DOI: 10.23868/202003008

[8]

Деев Р.В., Плакса И.Л., Баранич А.В., и др. К вопросу об остеогенезе в эпителиальных опухолях на примере пиломатриком // Гены и клетки. 2020. Т. 15. № 1. C. 60–65. DOI: 10.23868/202003008

[9]

Mohler ER, Gannon F, Reynolds C, et al. Bone formation and inflammation in cardiac valves. Circulation. 2001;103(11):1522–1528. DOI: 10.1161/01.cir.103.11.1522

[10]

Mohler E.R., Gannon F., Reynolds C., et al. Bone formation and inflammation in cardiac valves // Circulation. 2001. Vol. 103. No. 11. P. 1522–1528. DOI: 10.1161/01.cir.103.11.1522

[11]

Genêt F, Jourdan C, Schnitzler A, et al. Troublesome heterotopic ossification after central nervous system damage: a survey of 570 surgeries. PLoS One. 2011;6(1). DOI: 10.1371/journal.pone.0016632

[12]

Genêt F., Jourdan C., Schnitzler A., et al. Troublesome heterotopic ossification after central nervous system damage: a survey of 570 surgeries // PLoS One. 2011. Vol. 6. No. 1. DOI: 10.1371/journal.pone.0016632

[13]

Garland DE. Clinical observations on fractures and heterotopic ossification in the spinal cord and traumatic brain injured populations. Clin Orthop Rel Res. 1988;233:86–101.

[14]

Garland D.E. Clinical observations on fractures and heterotopic ossification in the spinal cord and traumatic brain injured populations // Clin. Orthop. Rel. Res. 1988. No. 233. P. 86–101.

[15]

Brady RD, Shultz SR, McDonald SJ, et al. Neurological heterotopic ossification: current understanding and future directions. Bone. 2018;109:35–42. DOI: 10.1016/j.bone.2017.05.015

[16]

Brady R.D., Shultz S.R., McDonald S.J., et al. Neurological heterotopic ossification: current understanding and future directions // Bone. 2018. Vol. 109. P. 35–42. DOI: 10.1016/j.bone.2017.05.015

[17]

Potter BK, Burns TC, Lacap AP, et al. Heterotopic ossification following traumatic and combat-related amputations. Prevalence, risk factors, and preliminary results of excision. J Bone Joint Surg Am. 2007;89:476–486. DOI: 10.2106/JBJS.F.00412

[18]

Potter B.K., Burns T.C., Lacap A.P., et al. Heterotopic ossification following traumatic and combat-related amputations. Prevalence, risk factors, and preliminary results of excision // J. Bone Joint Surg. Am. 2007. Vol. 89. P. 476–486. DOI: 10.2106/JBJS.F.00412

[19]

Forsberg JA, Pepek JM, Wagner S, et al. Heterotopic ossification in high-energy wartime extremity injuries: prevalence and risk factors. J Bone Joint Surg Am. 2009;91(5):1084–1091. DOI: 10.2106/JBJS.H.00792

[20]

Forsberg J.A., Pepek J.M., Wagner S., et al. Heterotopic ossification in high-energy wartime extremity injuries: prevalence and risk factors // J. Bone Joint Surg. Am. 2009. Vol. 91. No. 5. P. 1084–1091. DOI: 10.2106/JBJS.H.00792

[21]

Reznik JE, Biros E, Marshall R, et al. Prevalence and risk-factors of neurogenic heterotopic ossification in traumatic spinal cord and traumatic brain injured patients admitted to specialised units in Australia. J Musculoskelet Neuronal Interact. 2014;14(1):19–28.

[22]

Reznik J.E., Biros E., Marshall R., et.al. Prevalence and risk-factors of neurogenic heterotopic ossification in traumatic spinal cord and traumatic brain injured patients admitted to specialised units in Australia // J. Musculoskelet. Neuronal. Interact. 2014. Vol. 14. No. 1. P. 19–28.

[23]

Cipriano C, Pill SG, Rosenstock J, et al. Radiation therapy for preventing recurrence of neurogenic heterotopic ossification. Orthopedics. 2009;32(9). DOI: 10.3928/01477447-20090728-33

[24]

Cipriano C., Pill S.G., Rosenstock J., et al. Radiation therapy for preventing recurrence of neurogenic heterotopic ossification // Orthopedics. 2009. Vol. 32. No. 9. DOI: 10.3928/01477447-20090728-33

[25]

Estraneo A, Pascarella A, Masotta O, et al. Multi-center observational study on occurrence and related clinical factors of neurogenic heterotopic ossification in patients with disorders of consciousness. Brain Inj. 2021;35(5):530–535. DOI: 10.1080/02699052.2021.1893384

[26]

Estraneo A., Pascarella A., Masotta O., et al. Multi-center observational study on occurrence and related clinical factors of neurogenic heterotopic ossification in patients with disorders of consciousness // Brain Inj. 2021. Vol. 35. No. 5. P. 530–535. DOI: 10.1080/02699052.2021.1893384

[27]

Simonsen LL, Sonne-Holm S, Krasheninnikoff M, et al. Symptomatic heterotopic ossification after very severe traumatic brain injury in 114 patients: incidence and risk factors. Injury. 2007;38(10):1146–1150. DOI: 10.1016/j.injury.2007.03.019

[28]

Simonsen L.L., Sonne-Holm S., Krasheninnikoff M., et al. Symptomatic heterotopic ossification after very severe traumatic brain injury in 114 patients: incidence and risk factors // Injury. 2007. Vol. 38. No. 10. P. 1146–1150. DOI: 10.1016/j.injury.2007.03.019

[29]

Ranganathan K, Loder S, Agarwal S, et al. Heterotopic ossification: basic-science principles and clinical correlates. J Bone Joint Surg Am. 2015;97(13):1101–1111. DOI: 10.2106/JBJS.N.01056

[30]

Ranganathan K., Loder S., Agarwal S., et. al. Heterotopic ossification: basic-science principles and clinical correlates // J. Bone Joint Surg. Am. 2015. Vol. 97. No. 13. P. 1101–1111. DOI: 10.2106/JBJS.N.01056

[31]

Kluger G, Kochs A, Holthausen H. Heterotopic ossification in childhood and adolescence. J Child Neurology. 2000;15(6):406–413. DOI: 10.1177/088307380001500610

[32]

Kluger G., Kochs A., Holthausen H. Heterotopic ossification in childhood and adolescence // J. Child Neurol. 2000. Vol. 15. No. 6. P. 406–413. DOI: 10.1177/088307380001500610

[33]

Hurvitz EA, Mandac BR, Davidoff G, et al. Risk factors for heterotopic ossification in children and adolescents with severe traumatic brain injury. Arch Phys Med Rehabil. 1992;73(5):459–462.

[34]

Hurvitz E.A., Mandac B.R., Davidoff G., et al. Risk factors for heterotopic ossification in children and adolescents with severe traumatic brain injury // Arch. Phys. Med. Rehabil. 1992. Vol. 73. No. 5. P. 459–462.

[35]

Citak M, Suero EM, Backhaus M, et al. Risk factors for heterotopic ossification in patients with spinal cord injury: a case-control study of 264 patients. Spine. 2012;37(23):1953–1957. DOI: 10.1097/BRS.0b013e31825ee81b

[36]

Citak M., Suero E.M., Backhaus M., et al. Risk factors for heterotopic ossification in patients with spinal cord injury: a case-control study of 264 patients // Spine. 2012. Vol. 37. No. 23. P. 1953–1957. DOI: 10.1097/BRS.0b013e31825ee81b

[37]

Van Kuijk AA, Geurts ACH, van Kuppevelt HJM. Neurogenic heterotopic ossification in spinal cord injury. Spinal Cord. 2002;40:313–326. DOI: 10.1038/sj.sc.3101309

[38]

Van Kuijk A.A., Geurts A.C.H., van Kuppevelt H.J.M. Neurogenic heterotopic ossification in spinal cord injury // Spinal Cord. 2002. Vol. 40. P. 313–326. DOI: 10.1038/sj.sc.3101309

[39]

Yolcu YU, Wahood W, Goyal A, et al. Factors associated with higher rates of heterotopic ossification after spinal cord injury: a systematic review and meta-analysis. Clin Neurol Neurosurg. 2020;195. DOI: 10.1016/j.clineuro.2020.105821

[40]

Yolcu YU, Wahood W, Goyal A, et al. Factors associated with higher rates of heterotopic ossification after spinal cord injury: a systematic review and meta-analysis // Clin. Neurol. Neurosurg. 2020. Vol. 195. DOI: 10.1016/j.clineuro.2020.105821

[41]

Van Kampen PJ, Martina JD, Vos PE, et al. Potential risk factors for developing heterotopic ossification in patients with severe traumatic brain injury. J Head Trauma Rehabil. 2011;26(5):384–391. DOI: 10.1097/HTR.0b013e3181f78a59

[42]

Van Kampen P.J., Martina J.D., Vos P.E., et al. Potential risk factors for developing heterotopic ossification in patients with severe traumatic brain injury // J. Head Trauma Rehabil. 2011 Vol. 26. No. 5. P. 384–391. DOI: 10.1097/HTR.0b013e3181f78a59

[43]

Krauss H, Maier D, Bühren V, et al. Development of heterotopic ossifications, blood markers and outcome after radiation therapy in spinal cord injured patients. Spinal Cord. 2015;53(5):345–348. DOI: 10.1038/sc.2014.186

[44]

Krauss H., Maier D., Bühren V., et al. Development of heterotopic ossifications, blood markers and outcome after radiation therapy in spinal cord injured patients // Spinal Cord. 2015. Vol. 53. No. 5. P. 345–348. DOI: 10.1038/sc.2014.186

[45]

Rawat N, Chugh S, Zachariah K, et al. Incidence and characteristics of heterotopic ossification after spinal cord injury: a single institution study in India. Spinal Cord Ser Cases. 2019;5:72. DOI: 10.1038/s41394-019-0216-6

[46]

Rawat N., Chugh S., Zachariah K., et al. Incidence and characteristics of heterotopic ossification after spinal cord injury: a single institution study in India // Spinal Cord Ser. Cases. 2019. Vol. 5. P. 72. DOI: 10.1038/s41394-019-0216-6

[47]

Lal S, Hamilton BB, Heinemann A, et al. Risk factors for heterotopic ossification in spinal cord injury. Arch Phys Med Rehabil. 1989;70(5):387–390.

[48]

Lal S., Hamilton B.B., Heinemann A., et al. Risk factors for heterotopic ossification in spinal cord injury // Arch. Phys. Med. Rehabil. 1989. Vol. 70. No. 5. P. 387–390.

[49]

Thefenne L, de Brier G, Leclerc T, et al. Two new risk factors for heterotopic ossification development after severe burns. PLoS One. 2017;12(8). DOI: 10.1371/journal.pone.0182303

[50]

Thefenne L., de Brier G., Leclerc T., et al. Two new risk factors for heterotopic ossification development after severe burns // PLoS One. 2017. Vol. 12. No. 8. DOI: 10.1371/journal.pone.0182303

[51]

Orchard GR, Paratz JD, Blot S, et al. Risk factors in hospitalized patients with burn injuries for developing heterotopic ossification: a retrospective analysis. J Burn Care Res. 2015;36(4):465–470. DOI: 10.1097/BCR.0000000000000123

[52]

Orchard G.R., Paratz J.D., Blot S., et al. Risk factors in hospitalized patients with burn injuries for developing heterotopic ossification — a retrospective analysis // J. Burn Care Res. 2015. Vol. 36. No. 4. P. 465–470. DOI: 10.1097/BCR.0000000000000123

[53]

Pulik Ł, Mierzejewski B, Ciemerych MA, et al. The survey of cells responsible for heterotopic ossification development in skeletal muscles-human and mouse models. Cells. 2020;9(6):1324. DOI: 10.3390/cells9061324

[54]

Pulik Ł., Mierzejewski B., Ciemerych M.A., et al. The survey of cells responsible for heterotopic ossification development in skeletal muscles-human and mouse models // Cells. 2020 Vol. 9. No. 6. DOI: 10.3390/cells9061324

[55]

McCarthy EF, Sundaram M. Heterotopic ossification: a review. Skeletal Radiol. 2005;34(10):609–619. DOI: 10.1007/s00256-005

[56]

McCarthy E.F., Sundaram M. Heterotopic ossification: a review // Skeletal Radiology. 2005. Vol. 34. No. 10. P. 609–619. DOI: 10.1007/s00256-005

[57]

Foley KL, Hebela N, Keenan MA, et al. Histopathology of periarticular non-hereditary heterotopic ossification. Bone. 2018;109:65–70. DOI: 10.1016/j.bone.2017.12.006

[58]

Foley K.L., Hebela N., Keenan M.A., et al. Histopathology of periarticular non-hereditary heterotopic ossification // Bone. 2018. Vol. 109. P. 65–70. DOI: 10.1016/j.bone.2017.12.006

[59]

Brady RD, Grills BL, Church JE, et al. Closed head experimental traumatic brain injury increases size and bone volume of callus in mice with concomitant tibial fracture. Sci Rep. 2016;6. DOI: 10.1038/srep34491

[60]

Brady R.D., Grills B.L., Church J.E., et al. Closed head experimental traumatic brain injury increases size and bone volume of callus in mice with concomitant tibial fracture // Sci. Rep. 2016. Vol. 6. DOI: 10.1038/srep34491

[61]

Wang L, Yao X, Xiao L, et. al. The effects of spinal cord injury on bone healing in patients with femoral fractures. J Spinal Cord Med. 2014;37(4):414–419. DOI: 10.1179/2045772313Y.0000000155

[62]

Wang L., Yao X., Xiao L., et. al. The effects of spinal cord injury on bone healing in patients with femoral fractures // J. Spinal Cord Med. 2014. Vol. 37. No. 4. P. 414–419. DOI: 10.1179/2045772313Y.0000000155

[63]

Posti JP, Tenovuo O. Blood-based biomarkers and traumatic brain injury – a clinical perspective. Acta Neurologica Scandinavica. 2022;146(4):389–399. DOI: 10.1111/ane.13620

[64]

Posti J.P., Tenovuo O. Blood-based biomarkers and traumatic brain injury: a clinical perspective // Acta Neurol. Scand. 2022. Vol. 146. No. 4. P. 389–399. DOI: 10.1111/ane.13620

[65]

Gugala Z, Olmsted-Davis EA, Xiong Y, et al. Trauma-induced heterotopic ossification regulates the blood-nerve barrier. Front Neurol. 2018;9:408. DOI: 10.3389/fneur.2018.00408

[66]

Gugala Z., Olmsted-Davis E.A., Xiong Y., et al. Trauma-induced heterotopic ossification regulates the blood-nerve barrier // Front. Neurol. 2018. Vol. 9. P. 408. DOI: 10.3389/fneur.2018.00408

[67]

Wong KR, Mychasiuk R, O’Brien TJ, et al. Neurological heterotopic ossification: novel mechanisms, prognostic biomarkers and prophylactic therapies. Bone Res. 2020;8(1):42. DOI: 10.1038/s41413-020-00119-9

[68]

Wong K.R, Mychasiuk R., O’Brien T.J., et al. Neurological heterotopic ossification: novel mechanisms, prognostic biomarkers and prophylactic therapies // Bone Res. 2020. Vol. 8. No. 1. P. 42. DOI: 10.1038/s41413-020-00119-9

[69]

Gautschi OP, Toffoli AM, Joesbury KA, et al. Osteoinductive effect of cerebrospinal fluid from brain-injured patients. J Neurotrauma. 2007;24(1):154–162. DOI: 10.1089/neu.2006.0166

[70]

Gautschi O.P., Toffoli A.M., Joesbury K.A., et al. Osteoinductive effect of cerebrospinal fluid from brain-injured patients // J. Neurotrauma. 2007. Vol. 24. No. 1. P. 154–162. DOI: 10.1089/neu.2006.0166

[71]

Genêt F, Kulina I, Vaquette C, et al. Neurological heterotopic ossification following spinal cord injury is triggered by macrophage-mediated inflammation in muscle. J Pathol. 2015;236(2):229–240. DOI: 10.1002/path.4519

[72]

Genêt F., Kulina I., Vaquette C., et al. Neurological heterotopic ossification following spinal cord injury is triggered by macrophage-mediated inflammation in muscle // J. Pathol. 2015. Vol. 236. No. 2. P. 229–240. DOI: 10.1002/path.4519

[73]

Alexander KA, Tseng H, Salga M, et al. When the nervous system turns skeletal muscles into bones: how to solve the conundrum of neurogenic heterotopic ossification. Curr Osteoporos Rep. 2020;18(6):666–676. DOI: 10.1007/s11914-020-00636-w

[74]

Alexander K.A., Tseng H., Salga M., et al. When the nervous system turns skeletal muscles into bones: how to solve the conundrum of neurogenic heterotopic ossification // Curr. Osteoporos. Rep. 2020. Vol. 18. No. 6. P. 666–676. DOI: 10.1007/s11914-020-00636-w

[75]

Bryden DW, Tilghman JI, Hinds SR. Blast-related traumatic brain injury: current concepts and research considerations. J Exp Neurosci. 2019;13. DOI: 10.1177/1179069519872213

[76]

Bryden D.W., Tilghman J.I., Hinds S.R. Blast-related traumatic brain injury: current concepts and research considerations // J. Exp. Neurosci. 2019. Vol. 13. DOI: 10.1177/1179069519872213

[77]

Cunha DA, Camargos S, Passos VMA, et al. Heterotopic ossification after stroke: clinical profile and severity of ossification. J Stroke Cerebrovasc Dis. 2019;28(2):513–520. DOI: 10.1016/j.jstrokecerebrovasdis.2018.10.032

[78]

Cunha D.A., Camargos S., Passos V.M.A., et al. Heterotopic ossification after stroke: clinical profile and severity of ossification // J. Stroke Cerebrovasc. Dis. 2019. Vol. 28. No. 2. P. 513–520. DOI: 10.1016/j.jstrokecerebrovasdis.2018.10.032

[79]

Mezghani S, Salga M, Tordjman M, et al. Heterotopic ossification and COVID 19: imaging analysis of ten consecutive cases. Eur J Radiol. 2022;152. DOI: 10.1016/j.ejrad.2022.110336

[80]

Mezghani S., Salga M., Tordjman M., et al. Heterotopic ossification and COVID 19: Imaging analysis of ten consecutive cases // Eur. J. Radiol. 2022. P. 152. DOI: 10.1016/j.ejrad.2022.110336

[81]

Meyer C, Haustrate MA, Nisolle JF, et al. Heterotopic ossification in COVID-19: a series of 4 cases. Ann Phys Rehabil Med. 2020;63(6):565–567. DOI: 10.1016/j.rehab.2020.09.010

[82]

Meyer C., Haustrate M.A., Nisolle J.F., et al. Heterotopic ossification in COVID-19: a series of 4 cases // Ann. Phys. Rehabil. Med. 2020. Vol. 63. No. 6. P. 565–567. DOI: 10.1016/j.rehab.2020.09.010

[83]

Huang Y, Wang X, Zhou D, et al. Macrophages in heterotopic ossification: from mechanisms to therapy. NPJ Regen Med. 2021;6(1):70. DOI: 10.1038/s41536-021-00178-4

[84]

Huang Y., Wang X., Zhou D., et al. Macrophages in heterotopic ossification: from mechanisms to therapy // NPJ Regen. Med. 2021. Vol. 6. No. 1. DOI: 10.1038/s41536-021-00178-4

[85]

Lazard ZW, Olmsted-Davis EA, Salisbury EA, et al. Osteoblasts have a neural origin in heterotopic ossification. Clin Orthop Relat Res. 2015;9(473):2790–2806. DOI: 10.1007/s11999-015-4323-9

[86]

Lazard Z.W., Olmsted-Davis E.A., Salisbury E.A., et al. Osteoblasts have a neural origin in heterotopic ossification // Clin. Orthop. Relat. Res. 2015. Vol. 9 No. 473. P. 2790–2806. DOI: 10.1007/s11999-015-4323-9

[87]

Olmsted-Davis EA, Salisbury EA, Hoang D, et al. Progenitors in peripheral nerves launch heterotopic ossification. Stem Cells Transl Med. 2017;6(4):1109–1119. DOI: 10.1002/sctm.16-0347

[88]

Olmsted-Davis E.A., Salisbury E.A., Hoang D., et al. Progenitors in peripheral nerves launch heterotopic ossification // Stem. Cells Transl. Med. 2017. Vol. 6. No. 4. P. 1109–1119. DOI: 10.1002/sctm.16-0347

[89]

Girard D, Torossian F, Oberlin E, et al. Neurogenic heterotopic ossifications recapitulate hematopoietic stem cell niche development within an adult osteogenic muscle environment. Front Cell Dev Biol. 2021;9. DOI: 10.3389/fcell.2021.611842

[90]

Girard D., Torossian F., Oberlin E., et al. Neurogenic heterotopic ossifications recapitulate hematopoietic stem cell niche development within an adult osteogenic muscle environment // Front. Cell Dev. Biol. 2021. Vol. 9. DOI: 10.3389/fcell.2021.611842

[91]

Medici D, Shore EM, Lounev VY, et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 2010;16(12):1400–1406. DOI: 10.1038/nm.2252

[92]

Medici D., Shore E.M., Lounev V.Y., et al. Conversion of vascular endothelial cells into multipotent stem-like cells // Nat. Med. 2010. Vol. 16. No. 12. P. 1400–1406. DOI: 10.1038/nm.2252

[93]

Agarwal S, Loder S, Cholok D, et al. Local and circulating endothelial cells undergo Endothelial to Mesenchymal Transition (EndMT) in response to musculoskeletal injury. Sci Rep. 2016;6. DOI: 10.1038/srep32514

[94]

Agarwal S., Loder S., Cholok D., et al. Local and circulating endothelial cells undergo Endothelial to Mesenchymal Transition (EndMT) in response to musculoskeletal injury // Sci. Rep. 2016. Vol. 6. DOI: 10.1038/srep32514

[95]

Gareev IF, Beylerli OA, Vakhitov AK. Heterotopic ossification after central nervous system injuries: understanding of pathogenesis. N.N. Priorov Journal of Traumatology and Orthopedics. 2018;25(3–4):119–124. (In Russ.) DOI: 10.17116/vto201803-041119

[96]

Гареев И.Ф., Бейлерли О.А., Вахитов А.К. Гетеротопическая оссификация после травм центральной нервной системы: понимание патогенеза // Вестник травматологии и ортопедии им. Н.Н. Приорова. 2018. Т. 25. № 3–4. C. 119–124. DOI: 10.17116/vto201803-041119

[97]

Montecino M, Stein G, Stein J, et al. Multiple levels of epigenetic control for bone biology and pathology. Bone. 2015;(81):733–738. DOI: 10.1016/j.bone.2015.03.013

[98]

Montecino M., Stein G., Stein J., et al. Multiple levels of epigenetic control for bone biology and pathology // Bone. 2015. No. 81. P. 733–738. DOI: 10.1016/j.bone.2015.03.013

[99]

Komori T. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol. 2018;149:313–323. DOI: 10.1007/s00418-018-1640-6

[100]

Komori T. Runx2, an inducer of osteoblast and chondrocyte differentiation // Histochem. Cell Biol. 2018. Vol. 149. P. 313–323. DOI: 10.1007/s00418-018-1640-6

[101]

Lee KS, Hong SH, Bae SC. Both the smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene. 2002;21(47):7156–7163. DOI: 10.1038/sj.onc.1205937

[102]

Lee K.S., Hong S.H., Bae S.C. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein // Oncogene. 2002. Vol. 21. No. 47. P. 7156–7163. DOI: 10.1038/sj.onc.1205937

[103]

Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4(1):1–21. DOI: 10.1038/boneres.2016.9

[104]

Wu M., Chen G., Li Y.P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease // Bone Res. 2016. Vol. 4. No. 1. P. 1–21. DOI: 10.1038/boneres.2016.9

[105]

Rahman MS, Akhtar N, Jamil HM, et al. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. 2015;3(1):1–20. DOI: 10.1038/boneres.2015.5

[106]

Rahman M.S., Akhtar N., Jamil H.M., et al. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation // Bone Res. Vol. 3. No. 1. P. 1–20. DOI: 10.1038/boneres.2015.5

[107]

Kang JS, Alliston T, Delston R, et al. Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. Embo J. 2005;24(14):2543–2555. DOI: 10.1038/sj.emboj.7600729

[108]

Kang J.S., Alliston T., Delston R., et al. Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3 // Embo J. 2005. Vol. 24. No. 14. P. 2543–2555. DOI: 10.1038/sj.emboj.7600729

[109]

Hino K, Horigome K, Nishio M. Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva. J Clin Invest. 2017;127(9):3339–3352. DOI: 10.1172/JCI93521

[110]

Hino K., Horigome K., Nishio M. Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressive // J. Clin. Invest. 2017. Vol. 127. No. 9. P. 3339–3352. DOI: 10.1172/JCI93521

[111]

Agarwal S, Loder S, Brownley C, et al. Inhibition of Hif1 alpha prevents both trauma-induced and genetic heterotopic ossification. Proc Natl Acad Sci. 2016;113(3):E338–E347. DOI: 10.1073/pnas.1515397113

[112]

Agarwal S., Loder S., Brownley C., et al. Inhibition of Hif1 alpha prevents both trauma-induced and genetic heterotopic ossification // Proc. Natl. Acad. Sci. 2016. Vol. 113. No. 3. P. E338–E347. DOI: 10.1073/pnas.1515397113

[113]

Peterson JR, De La Rosa S, Sun H, et al. Burn injury enhances bone formation in heterotopic ossification model. Ann Surg. 2014;259(5):993–998. DOI: 10.1097/SLA.0b013e318291da85

[114]

Peterson J.R., De La Rosa S., Sun, H., et al. Burn injury enhances bone formation in heterotopic ossification model // Ann. Surg. 2014. Vol. 259. No. 5. P. 993–998. DOI: 10.1097/SLA.0b013e318291da85

[115]

Croes M, Kruyt MC, Boot W, et al. The role of bacterial stimuli in inflammation-driven bone formation. Eur Cells Mater. 2019;37:402–419. DOI: 10.22203/eCM.v037a24

[116]

Croes M., Kruyt M.C., Boot W., et al. The role of bacterial stimuli in inflammation-driven bone formation // Eur. Cells Mater. 2019. Vol. 37. P. 402–419. DOI: 10.22203/eCM.v037a24

[117]

Ranganathan K, Peterson J, Agarwal S, et al. Role of gender in burn-induced heterotopic ossification and mesenchymal cell osteogenic differentiation. Plast Reconstr Surg. 2015;135(6):1631–1641. DOI: 10.1097/PRS.0000000000001266

[118]

Ranganathan K., Peterson J., Agarwal S., et al. Role of gender in burn-induced heterotopic ossification and mesenchymal cell osteogenic differentiation // Plast. Reconstr. Surg. 2015. Vol. 135. No. 6. P. 1631–1641. DOI: 10.1097/PRS.0000000000001266

[119]

Xu Y, Huang M, He W, et al. Heterotopic ossification: clinical features, basic researches, and mechanical stimulations. Front Cell Dev Biol. 2022;10. DOI: 10.3389/fcell.2022.770931

[120]

Xu Y., Huang M., He W., et al. Heterotopic ossification: clinical features, basic researches, and mechanical stimulations // Front. Cell Dev. Biol. 2022. Vol. 10. DOI: 10.3389/fcell.2022.770931

[121]

Ebinger T, Roesch M, Kiefer H, et al. Influence of etiology in heterotopic bone formation of the hip. J Trauma. 2000;48(6):1058–1062. DOI: 10.1097/00005373-200006000-00010

[122]

Ebinger T., Roesch M., Kiefer H., et al. Influence of etiology in heterotopic bone formation of the hip // J. Trauma. 2000. Vol. 48. No. 6. P. 1058–1062. DOI: 10.1097/00005373-200006000-00010

[123]

Ko HY. Neurogenic heterotopic ossification in spinal cord injuries. In: Management and Rehabilitation of Spinal Cord Injuries. Singapore: Springer; 2020. P. 691–704. DOI: 10.1007/978-981-19-0228-4_35

[124]

Ko H.Y. Neurogenic heterotopic ossification in spinal cord injuries // Management and Rehabilitation of Spinal Cord Injuries. Singapore: Springer, 2020. P. 691–704. DOI: 10.1007/978-981-19-0228-4_35

[125]

Wittenberg RH, Peschke U, Bötel U. Heterotopic ossification after spinal cord injury: epidemiology and risk factors. J Bone Joint Surg Br. 1992;74(2):215–218. DOI: 10.1302/0301-620X.74B2.1544955

[126]

Wittenberg R.H., Peschke U., Bötel U. Heterotopic ossification after spinal cord injury: epidemiology and risk factors // J. Bone Joint Surg. Br. 1992. Vol. 74. No. 2. P. 215–218. DOI: 10.1302/0301-620X.74B2.1544955

[127]

Green D. Medical management of long-term disability. Boston: Butterworth-Heinemann, 1996.

[128]

Mujtaba B, Taher A, Fiala MJ, et al. Heterotopic ossification: radiological and pathological review. Radiol Oncol. 2019;53(3):275. DOI: 10.2478/raon-2019-0039

[129]

Mujtaba B., Taher A., Fiala M.J., et al. Heterotopic ossification: radiological and pathological review // Radiol. Oncol. 2019. Vol. 53. No. 3. P. 275–284. DOI: 10.2478/raon-2019-0039

[130]

Wilkinson JM, Stockley I, Hamer AJ, et al. Biochemical markers of bone turnover and development of heterotopic ossification after total hip arthroplasty. J Orthop Res. 2003;21(3):529–534. DOI: 10.1016/S0736-0266(02)00236-X

[131]

Wilkinson J.M, Stockley I., Hamer A.J., et al. Biochemical markers of bone turnover and development of heterotopic ossification after total hip arthroplasty // J. Orthop. Res. 2003. Vol. 21. No. 3. P. 529–534. DOI: 10.1016/S0736-0266(02)00236-X

[132]

Povoroznyuk V, Bystrytska M, Balatska N. Early diagnostic algorithm in heterotopic ossification in patients with spine and spinal cord injury. Int Neurol J. 2017;3:89–94. DOI: 10.22141/2224-0713.5.91.2017.110861

[133]

Povoroznyuk V., Bystrytska M., Balatska N. Early diagnostic algorithm in heterotopic ossification in patients with spine and spinal cord injury // Int. Neurol. J. 2017. Vol. 3. P. 89–94. DOI: 10.22141/2224-0713.5.91.2017.110861

[134]

Pulik Ł, Mierzejewski B, Sibilska A, et al. The role of miRNA and lncRNA in heterotopic ossification pathogenesis. Stem Cell Res Ther. 2022;13(1):523. DOI: 10.1186/s13287-022-03213-3

[135]

Pulik Ł., Mierzejewski B., Sibilska A., et al. The role of miRNA and lncRNA in heterotopic ossification pathogenesis // Stem Cell Res. Ther. 2022. Vol. 13. P. 523. DOI: 10.1186/s13287-022-03213-3

[136]

Edsberg LE, Crowgey EL, Osborn PM, et al. A survey of proteomic biomarkers for heterotopic ossification in blood serum. J Orthop Surg Res. 2017;12(1):1–13. DOI: 10.1186/s13018-017-0567-2

[137]

Edsberg L.E., Crowgey E.L., Osborn P.M. et al. A survey of proteomic biomarkers for heterotopic ossification in blood serum // J. Orthop. Surg. Res. 2017. Vol. 12. No. 1. P. 1–13. DOI: 10.1186/s13018-017-0567-2

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (557KB)

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/