Electrostimulation as a method of correction of respiratory disorders in patients with cervical spinal cord injury: A review
Vachtang G. Toriya , Sergei V. Vissarionov , Margarita V. Savina , Alexey G. Baindurashvili
Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2023, Vol. 11 ›› Issue (2) : 239 -251.
Electrostimulation as a method of correction of respiratory disorders in patients with cervical spinal cord injury: A review
BACKGROUND: Patients with cervical spinal cord injury have the highest risk of developing respiratory dysfunction and associated complications such as pneumonia, atelectasis, and respiratory failure. Respiratory dysfunction is the leading cause of comorbid, somatic, and infectious pathology, and mortality following traumatic cervical spinal cord injuries. Mechanical ventilation of the lungs is the standard treatment for such patients; however, it is associated with atrophy and diaphragm dysfunction.
AIM: To analyze literature data on the use of electrical stimulation techniques of the spinal cord, nerves, and muscles for the correction of respiratory disorders in patients with cervical spinal cord trauma.
MATERIALS AND METHODS: This study presented the results of the search and analysis of peer-reviewed articles that examined the effects of various electrical stimulation techniques on respiratory function in patients with cervical spinal cord injury. ScienceDirect, Google Scholar, and PubMed were searched from 2000 to 2022.
RESULTS: Currently, new treatment options are available for patients with tetraplegia, with reduced ventilatory function. Many studies have shown the positive effect of electrostimulation techniques on ventilatory function such as reduced time spent on mechanical ventilation and reduced incidence of infections and other lung complications.
CONCLUSIONS: Electrical stimulation promotes neuromuscular plasticity and results in improved spontaneous activation of the diaphragm and respiratory muscles. Electrostimulation in a comprehensive rehabilitation program of patients with traumatic spinal cord injuries at the cervical level is currently employed to promote weaning from mechanical ventilation and prevent accompanying complications such as respiratory failure, pneumonia, and atelectasis. In addition to invasive electrical stimulation of the diaphragmatic nerve and/or spinal cord, existing less invasive electrostimulation techniques require further investigation in patients with spinal cord injury and respiratory dysfunction.
transcutaneous spinal cord stimulation / spinal cord stimulation / epidural spinal cord stimulation / neuromodulation / neuroprosthesis / electrical stimulation / functional electrical stimulation / muscle stimulation / respiration / cough / inspiratory / expiratory
| [1] |
Krylov VV, Grin’ AA, Lutsik AA, et al. Klinicheskie rekomendatsii po lecheniyu ostroi oslozhnennoi i neoslozhnennoi travmy pozvonochnika u vzroslykh. Nizhnii Novgorod; 2013. (In Russ.) |
| [2] |
Крылов В.В., Гринь А.А., Луцик А.А, и др. Клинические рекомендации по лечению острой осложненной и неосложненной травмы позвоночника у взрослых. Нижний Новгород, 2013. |
| [3] |
Krylov VV, Grin’ AA, Lutsik AA, et al. Klinicheskie rekomendatsii po lecheniyu ostroi oslozhnennoi i neoslozhnennoi travmy pozvonochnika u vzroslykh. Nizhnii Novgorod; 2013. (In Russ.) |
| [4] |
DiMarco AF. Neural prostheses in the respiratory system. J Rehabil Res Dev. 2001;38(6):601–607. |
| [5] |
Dimarco A.F. Neural prostheses in the respiratory system // J. Rehabil. Res. Dev. 2001. Vol. 38. No. 6. P. 601–607. |
| [6] |
DiMarco AF. Neural prostheses in the respiratory system. J Rehabil Res Dev. 2001;38(6):601–607. |
| [7] |
Sezer N, Akkuş S, Uğurlu FG. Chronic complications of spinal cord injury. World J Orthop. 2015;6(1):24–33. DOI: 10.5312/wjo.v6.i1.24 |
| [8] |
Sezer N., Akkuş S., Uğurlu F.G. Chronic complications of spinal cord injury // World J. Orthop. 2015. Vol. 6. No. 1. P. 24–33. DOI: 10.5312/wjo.v6.i1.24 |
| [9] |
Sezer N, Akkuş S, Uğurlu FG. Chronic complications of spinal cord injury. World J Orthop. 2015;6(1):24–33. DOI: 10.5312/wjo.v6.i1.24 |
| [10] |
Tester NJ, Fuller DD, Fromm JS, et al. Long-term facilitation of ventilation in humans with chronic spinal cord injury. Am J Respir Crit Care Med. 2014;189(1):57–65. DOI: 10.1164/rccm.201305-0848OC |
| [11] |
Tester N.J., Fuller D.D., Fromm J.S., et al. Long-term facilitation of ventilation in humans with chronic spinal cord injury // Am. J. Respir. Crit. Care Med. 2014. Vol. 189. No. 1. DOI: 10.1164/rccm.201305-0848oc |
| [12] |
Tester NJ, Fuller DD, Fromm JS, et al. Long-term facilitation of ventilation in humans with chronic spinal cord injury. Am J Respir Crit Care Med. 2014;189(1):57–65. DOI: 10.1164/rccm.201305-0848OC |
| [13] |
Berlly M, Shem K. Respiratory management during the first five days after spinal cord injury. J Spinal Cord Med. 2007;30(4):309–318. DOI: 10.1080/10790268.2007 |
| [14] |
Berlly M., Shem K. Respiratory management during the first five days after spinal cord injury // J. Spinal Cord. Med. 2007. Vol. 30. No. 4. DOI: 10.1080/10790268.2007.11753946 |
| [15] |
Berlly M, Shem K. Respiratory management during the first five days after spinal cord injury. J Spinal Cord Med. 2007;30(4):309–318. DOI: 10.1080/10790268.2007 |
| [16] |
Wolfe LF, Gay PC. Point: Should phrenic nerve stimulation be the treatment of choice for spinal cord injury? Yes. Chest. 2013;143(5):1201–1203. DOI: 10.1378/chest.13-0217 |
| [17] |
Wolfe L.F., Gay P.C. Point: should phrenic nerve stimulation be the treatment of choice for spinal cord injury? Yes // Chest. 2013. Vol. 143. No. 5. P. 1201–1203. DOI: 10.1378/chest.13-0217 |
| [18] |
Wolfe LF, Gay PC. Point: Should phrenic nerve stimulation be the treatment of choice for spinal cord injury? Yes. Chest. 2013;143(5):1201–1203. DOI: 10.1378/chest.13-0217 |
| [19] |
Fielingsdorf K, Dunn RN. Cervical spine injury outcome – a review of 101 cases treated in a tertiary referral unit. S Afr Med J. 2007;97(3):203–207. |
| [20] |
Frielingsdorf K., Dunn R.N. Cervical spine injury outcome – a review of 101 cases treated in a tertiary referral unit // S. Afr. Med. J. 2007. Vol. 97. No. 3. P. 203–207. |
| [21] |
Fielingsdorf K, Dunn RN. Cervical spine injury outcome – a review of 101 cases treated in a tertiary referral unit. S Afr Med J. 2007;97(3):203–207. |
| [22] |
Fisher CG, Noonan VK, Dvorak MF. Changing face of spine trauma care in North America. Spine. 2006;31(11):S2–8. DOI: 10.1097/01.brs.0000217948.02567 |
| [23] |
Fisher C.G., Noonan V.K., Dvorak M.F. Changing face of spine trauma care in North America // Spine. 2006. Vol. 31. No. 11. P. S2–S8. DOI: 10.1097/01.brs.0000217948.02567.3a |
| [24] |
Fisher CG, Noonan VK, Dvorak MF. Changing face of spine trauma care in North America. Spine. 2006;31(11):S2–8. DOI: 10.1097/01.brs.0000217948.02567 |
| [25] |
Schilero GJ, Spungen AM, Bauman WA, et al. Pulmonary function and spinal cord injury. Respir Physiol Neurobiol. 2009;166(3):129–141. DOI: 10.1016/j.resp.2009.04.002 |
| [26] |
Schilero G.J., Spungen A.M., Bauman W.A., et al. Pulmonary function and spinal cord injury // Respir. Physiol. Neurobiol. 2009. Vol. 166. No. 3. P. 129–141. DOI: 10.1016/j.resp.2009.04.002 |
| [27] |
Schilero GJ, Spungen AM, Bauman WA, et al. Pulmonary function and spinal cord injury. Respir Physiol Neurobiol. 2009;166(3):129–141. DOI: 10.1016/j.resp.2009.04.002 |
| [28] |
Tator CH, Minassian K, Mushahwar VK. Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury. Handb Clin Neurol. 2012;109:283–296. DOI: 10.1016/B978-0-444-52137-8.00018-8 |
| [29] |
Tator C.H., Minassian K., Mushahwar V.K. Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury // Handb. Clin. Neurol. 2012. Vol. 109. P. 283–296. DOI: 10.1016/b978-0-444-52137-8.00018-8 |
| [30] |
Tator CH, Minassian K, Mushahwar VK. Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury. Handb Clin Neurol. 2012;109:283–296. DOI: 10.1016/B978-0-444-52137-8.00018-8 |
| [31] |
Angeli CA, Edgerton VR, Gerasimenko YP, et al. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain. 2014;137(Pt 5):1394–1409. DOI: 10.1093/brain/awu038 |
| [32] |
Angeli C.A., Edgerton V.R., Gerasimenko Y.P., et al. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans // Brain. Vol. 137. Pt. 5. P. 1394–409. DOI: 10.1093/brain/awu038 |
| [33] |
Angeli CA, Edgerton VR, Gerasimenko YP, et al. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain. 2014;137(Pt 5):1394–1409. DOI: 10.1093/brain/awu038 |
| [34] |
Harkema S, Gerasimenko Y, Hodes J, et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet. 2011;377(9781):1938–1947. DOI: 10.1016/S0140-6736(11)60547-3 |
| [35] |
Harkema S., Gerasimenko Y., Hodes J., et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study // Lancet. 2011. Vol. 377. No. 9781. P. 1938–1947. DOI: 10.1016/s0140-6736(11)60547-3 |
| [36] |
Harkema S, Gerasimenko Y, Hodes J, et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet. 2011;377(9781):1938–1947. DOI: 10.1016/S0140-6736(11)60547-3 |
| [37] |
Rejc E, Angeli C, Harkema S. Effects of lumbosacral spinal cord epidural stimulation for standing after chronic complete paralysis in humans. PLoS One. 2015;10(7). DOI: 10.1371/journal.pone.0133998 |
| [38] |
Rejc E., Angeli C., Harkema S. Effects of lumbosacral spinal cord epidural stimulation for standing after chronic complete paralysis in humans // PLoS One. 2015. Vol. 10. No. 7. DOI: 10.1371/journal.pone.0133998 |
| [39] |
Rejc E, Angeli C, Harkema S. Effects of lumbosacral spinal cord epidural stimulation for standing after chronic complete paralysis in humans. PLoS One. 2015;10(7). DOI: 10.1371/journal.pone.0133998 |
| [40] |
Howard-Quijano K, Takamiya T, Dale EA, et al. Spinal cord stimulation reduces ventricular arrhythmias during acute ischemia by attenuation of regional myocardial excitability. Am J Physiol Heart Circ Physiol. 2017;313(2):H421–H431. DOI: 10.1152/ajpheart.00129.2017 |
| [41] |
14. Howard-Quijano K., Takamiya T., Dale E.A., et al. Spinal cord stimulation reduces ventricular arrhythmias during acute ischemia by attenuation of regional myocardial excitability // Am. J. Physiol. Heart Circ. Physiol. 2017. Vol. 313. No. 2. P. H421–H431. DOI: 10.1152/ajpheart.00129.2017 |
| [42] |
Howard-Quijano K, Takamiya T, Dale EA, et al. Spinal cord stimulation reduces ventricular arrhythmias during acute ischemia by attenuation of regional myocardial excitability. Am J Physiol Heart Circ Physiol. 2017;313(2):H421–H431. DOI: 10.1152/ajpheart.00129.2017 |
| [43] |
Toriya VG, Savina MV, Vissarionov SV, et al. Hereditary erythromelalgia in an adolescent. Clinical observation of a rare disease. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2022;10(1):85–92. (In Russ.) DOI: 10.17816/PTORS90396 |
| [44] |
Тория В.Г., Савина М.В., Виссарионов С.В., и др. Наследственная эритромелалгия у подростка. Клиническое наблюдение редкого заболевания // Ортопедия, травматология и восстановительная хирургия детского возраста. 2022. Т. 10. № 1. C. 85–92. DOI: 10.17816/PTORS90396 |
| [45] |
Toriya VG, Savina MV, Vissarionov SV, et al. Hereditary erythromelalgia in an adolescent. Clinical observation of a rare disease. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2022;10(1):85–92. (In Russ.) DOI: 10.17816/PTORS90396 |
| [46] |
Fuller DD, Golder FJ, Olson EB Jr, et al. Recovery of phrenic activity and ventilation after cervical spinal hemisection in rats. J Appl Physiol. 2006;100(3):800–806. DOI: 10.1152/japplphysiol.00960.2005 |
| [47] |
Fuller D.D., Golder F.J., Olson E.B. Jr, et al. Recovery of phrenic activity and ventilation after cervical spinal hemisection in rats // J. Appl. Physiol. 2006. Vol. 100. No. 3. P. 800–806. DOI: 10.1152/japplphysiol.00960.2005 |
| [48] |
Fuller DD, Golder FJ, Olson EB Jr, et al. Recovery of phrenic activity and ventilation after cervical spinal hemisection in rats. J Appl Physiol. 2006;100(3):800–806. DOI: 10.1152/japplphysiol.00960.2005 |
| [49] |
Vinit S, Gauthier P, Stamegna JC, et al. High cervical lateral spinal cord injury results in long-term ipsilateral hemidiaphragm paralysis. J Neurotrauma. 2006;23(7):1137–1146. DOI: 10.1089/neu.2006.23.1137 |
| [50] |
Vinit S., Gauthier P., Stamegna J.C., et al. High cervical lateral spinal cord injury results in long-term ipsilateral hemidiaphragm paralysis // J. Neurotrauma. 2006. Vol. 23. No. 7. P. 1137–1146. DOI: 10.1089/neu.2006.23.1137 |
| [51] |
Vinit S, Gauthier P, Stamegna JC, et al. High cervical lateral spinal cord injury results in long-term ipsilateral hemidiaphragm paralysis. J Neurotrauma. 2006;23(7):1137–1146. DOI: 10.1089/neu.2006.23.1137 |
| [52] |
Dalal K, DiMarco AF. Diaphragmatic pacing in spinal cord injury. Phys Med Rehabil Clin N Am. 2014;25(3):619–629. DOI: 10.1016/j.pmr.2014.04.004 |
| [53] |
Dalal K., DiMarco A.F. Diaphragmatic pacing in spinal cord injury // Phys. Med. Rehabil. Clin. N. Am. 2014. Vol. 25. No. 3. P. 619–629. DOI: 10.1016/j.pmr.2014.04.004 |
| [54] |
Dalal K, DiMarco AF. Diaphragmatic pacing in spinal cord injury. Phys Med Rehabil Clin N Am. 2014;25(3):619–629. DOI: 10.1016/j.pmr.2014.04.004 |
| [55] |
Hall OT, McGrath RP, Peterson MD, et al. The burden of traumatic spinal cord injury in the united states: disability-adjusted life years. Arch Phys Med Rehabil. 2019;100(1):95–100. DOI: 10.1016/j.apmr.2018.08.179 |
| [56] |
Hall O.T., McGrath R.P., Peterson M.D., et al. The burden of traumatic spinal cord injury in the united states: disability-adjusted life years // Arch. Phys. Med. Rehabil. 2019. Vol. 100. No. 1. P. 95–100. DOI: 10.1016/j.apmr.2018.08.179 |
| [57] |
Hall OT, McGrath RP, Peterson MD, et al. The burden of traumatic spinal cord injury in the united states: disability-adjusted life years. Arch Phys Med Rehabil. 2019;100(1):95–100. DOI: 10.1016/j.apmr.2018.08.179 |
| [58] |
Hachmann JT, Grahn PJ, Calvert JS, et al. Electrical neuromodulation of the respiratory system after spinal cord injury. Mayo Clin Proc. 2017;92(9):1401–1414. DOI: 10.1016/j.mayocp.2017.04.011 |
| [59] |
Hachmann J.T., Grahn P.J., Calvert J.S., et al. Electrical neuromodulation of the respiratory system after spinal cord injury // Mayo Clin. Proc. 2017. Vol. 92. No. 9. P. 1401–1414. DOI: 10.1016/j.mayocp.2017.04.011 |
| [60] |
Hachmann JT, Grahn PJ, Calvert JS, et al. Electrical neuromodulation of the respiratory system after spinal cord injury. Mayo Clin Proc. 2017;92(9):1401–1414. DOI: 10.1016/j.mayocp.2017.04.011 |
| [61] |
Graco M, McDonald L, Green SE, et al. Prevalence of sleep-disordered breathing in people with tetraplegia – a systematic review and meta-analysis. Spinal Cord. 2021;59(5):474–484. DOI: 10.1038/s41393-020-00595-0 |
| [62] |
Graco M., McDonald L., Green S.E., et al. Prevalence of sleep-disordered breathing in people with tetraplegia – a systematic review and meta-analysis // Spinal Cord. 2021. Vol. 59. No. 5. P. 474–484. DOI: 10.1038/s41393-020-00595-0 |
| [63] |
Graco M, McDonald L, Green SE, et al. Prevalence of sleep-disordered breathing in people with tetraplegia – a systematic review and meta-analysis. Spinal Cord. 2021;59(5):474–484. DOI: 10.1038/s41393-020-00595-0 |
| [64] |
Arora S, Flower O, Murray NP, et al. Respiratory care of patients with cervical spinal cord injury: a review. Crit Care Resusc. 2012;14(1):64–73. |
| [65] |
Arora S., Flower O., Murray N.P., et al. Respiratory care of patients with cervical spinal cord injury: a review // Crit. Care Resusc. 2012. Vol. 14. No. 4. P. 64–73. |
| [66] |
Arora S, Flower O, Murray NP, et al. Respiratory care of patients with cervical spinal cord injury: a review. Crit Care Resusc. 2012;14(1):64–73. |
| [67] |
Chiodo AE, Scelza W, Forchheimer M. Predictors of ventilator weaning in individuals with high cervical spinal cord injury. J Spinal Cord Med. 2008;31(1):72–77. DOI: 10.1080/10790268.2008.11753984 |
| [68] |
Chiodo A.E., Scelza W., Forchheimer M. Predictors of ventilator weaning in individuals with high cervical spinal cord injury // J. Spinal. Cord Med. 2008. Vol. 31. No. 1. P. 72–77. DOI: 10.1080/10790268.2008.11753984 |
| [69] |
Chiodo AE, Scelza W, Forchheimer M. Predictors of ventilator weaning in individuals with high cervical spinal cord injury. J Spinal Cord Med. 2008;31(1):72–77. DOI: 10.1080/10790268.2008.11753984 |
| [70] |
Zander HJ, Kowalski KE, DiMarco AF, et al. Model-based optimization of spinal cord stimulation for inspiratory muscle activation. Neuromodulation. 2022;25(8):1317–1329. DOI: 10.1111/ner.13415 |
| [71] |
Zander H.J., Kowalski K.E., DiMarco A.F., et al. Model-based optimization of spinal cord stimulation for inspiratory muscle activation // Neuromodulation. 2022. Vol. 25. No. 8. P. 1317–1329. DOI: 10.1111/ner.13415 |
| [72] |
Zander HJ, Kowalski KE, DiMarco AF, et al. Model-based optimization of spinal cord stimulation for inspiratory muscle activation. Neuromodulation. 2022;25(8):1317–1329. DOI: 10.1111/ner.13415 |
| [73] |
Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–1335. DOI: 10.1056/NEJMoa070447 |
| [74] |
Levine S., Nguyen T., Taylor N., et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans // N. Engl. J. Med. 2008. Vol. 358. No. 13. P. 1327–1335. DOI: 10.1056/nejmoa070447 |
| [75] |
Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–1335. DOI: 10.1056/NEJMoa070447 |
| [76] |
DiMarco AF. Phrenic nerve stimulation in patients with spinal cord injury. Respir Physiol Neurobiol. 2009;169(2):200–209. DOI: 10.1016/j.resp.2009.09.008 |
| [77] |
DiMarco A.F. Phrenic nerve stimulation in patients with spinal cord injury // Respir. Physiol. Neurobiol. 2009. Vol. 169. No. 2. P. 200–209. DOI: 10.1016/j.resp.2009.09.008 |
| [78] |
DiMarco AF. Phrenic nerve stimulation in patients with spinal cord injury. Respir Physiol Neurobiol. 2009;169(2):200–209. DOI: 10.1016/j.resp.2009.09.008 |
| [79] |
DeVivo MJ, Go BK, Jackson AB. Overview of the national spinal cord injury statistical center database. J Spinal Cord Med. 2002;25(4):335–338. DOI: 10.1080/10790268.2002.11753637 |
| [80] |
DeVivo M.J., Go B.K., Jackson A.B. Overview of the national spinal cord injury statistical center database // J. Spinal Cord. Med. 2002. Vol. 25. No. 4. P. 335–338. DOI: 10.1080/10790268.2002.11753637 |
| [81] |
DeVivo MJ, Go BK, Jackson AB. Overview of the national spinal cord injury statistical center database. J Spinal Cord Med. 2002;25(4):335–338. DOI: 10.1080/10790268.2002.11753637 |
| [82] |
Adler D, Gonzalez-Bermejo J, Duguet A, et al. Diaphragm pacing restores olfaction in tetraplegia. Eur Respir J. 2009;34(2):365–370. DOI: 10.1183/09031936.00177708 |
| [83] |
Adler D., Gonzalez-Bermejo J., Duguet A., et al. Diaphragm pacing restores olfaction in tetraplegia // Eur. Respir. J. 2008. Vol. 34. No. 2. P. 365–370. DOI: 10.1183/09031936.00177708 |
| [84] |
Adler D, Gonzalez-Bermejo J, Duguet A, et al. Diaphragm pacing restores olfaction in tetraplegia. Eur Respir J. 2009;34(2):365–370. DOI: 10.1183/09031936.00177708 |
| [85] |
Jarosz R, Littlepage MM, Creasey G, et al. Functional electrical stimulation in spinal cord injury respiratory care. Top Spinal Cord Inj Rehabil. 2012;18(4):315–321. DOI: 10.1310/sci1804-315 |
| [86] |
Jarosz R., Littlepage M.M., Creasey G., et al. Functional electrical stimulation in spinal cord injury respiratory care // Top Spinal Cord Inj. Rehabil. 2012. Vol. 18. No. 4. P. 315–321. DOI: 10.1310/sci1804-315 |
| [87] |
Jarosz R, Littlepage MM, Creasey G, et al. Functional electrical stimulation in spinal cord injury respiratory care. Top Spinal Cord Inj Rehabil. 2012;18(4):315–321. DOI: 10.1310/sci1804-315 |
| [88] |
Vissarionov SV, Baindurashvili AG, Kryukova IA. International standards for neurological classification of spinal cord injuries (ASIA/ISNCSCI scale, revised 2015). Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2016;4(2):67–72. (In Russ.) DOI: 10.17816/PTORS4267-72 |
| [89] |
Виссарионов С.В., Баиндурашвили А.Г., Крюкова И.А. Международные стандарты неврологической классификации травмы спинного мозга (шкала ASIA/ISNCSCI, пересмотр 2015 года) // Ортопедия, травматология и восстановительная хирургия детского возраста. 2016. Т. 4. № 2. C. 67–72. DOI: 10.17816/PTORS4267-72 |
| [90] |
Vissarionov SV, Baindurashvili AG, Kryukova IA. International standards for neurological classification of spinal cord injuries (ASIA/ISNCSCI scale, revised 2015). Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2016;4(2):67–72. (In Russ.) DOI: 10.17816/PTORS4267-72 |
| [91] |
Creasey GH, Ho CH, Triolo RJ, et al. Clinical applications of electrical stimulation after spinal cord injury. J Spinal Cord Med. 2004;27(4):365–375. DOI: 10.1080/10790268.2004.11753774 |
| [92] |
Creasey G.H., Ho C.H., Triolo R.J., et al. Clinical applications of electrical stimulation after spinal cord injury // J. Spinal Cord. Med. 2004. Vol. 27. No. 4. P. 365–375. DOI: 10.1080/10790268.2004.11753774 |
| [93] |
Creasey GH, Ho CH, Triolo RJ, et al. Clinical applications of electrical stimulation after spinal cord injury. J Spinal Cord Med. 2004;27(4):365–375. DOI: 10.1080/10790268.2004.11753774 |
| [94] |
Miko I, Gould R, Wolf S, et al. Acute spinal cord injury. Int Anesthesiol Clin. 2009;47(1):37–54. DOI: 10.1097/AIA.0b013e3181950068 |
| [95] |
Miko I., Gould R., Wolf S., et al. Acute spinal cord injury // Int. Anesthesiol. Clin. 2009. Vol. 47. No. 1. P. 37–54. DOI: 10.1097/aia.0b013e3181950068 |
| [96] |
Miko I, Gould R, Wolf S, et al. Acute spinal cord injury. Int Anesthesiol Clin. 2009;47(1):37–54. DOI: 10.1097/AIA.0b013e3181950068 |
| [97] |
DiMarco AF. Restoration of respiratory muscle function following spinal cord injury. Review of electrical and magnetic stimulation techniques. Respir Physiol Neurobiol. 2005;147(2–3):273–287. DOI: 10.1016/j.resp.2005.03.007 |
| [98] |
DiMarco A.F. Restoration of respiratory muscle function following spinal cord injury: Review of electrical and magnetic stimulation techniques // Respir. Physiol. Neurobiol. 2005. Vol. 147. No. 2–3. P. 273–287. DOI: 10.1016/j.resp.2005.03.007 |
| [99] |
DiMarco AF. Restoration of respiratory muscle function following spinal cord injury. Review of electrical and magnetic stimulation techniques. Respir Physiol Neurobiol. 2005;147(2–3):273–287. DOI: 10.1016/j.resp.2005.03.007 |
| [100] |
Bass CR, Davis M, Rafaels K, et al. A methodology for assessing blast protection in explosive ordnance disposal bomb suits. Int J Occup Saf Ergon. 2005;11(4):347–361. DOI: 10.1080/10803548.2005.11076655 |
| [101] |
Bass C.R., Davis M., Rafaels K., et al. A methodology for assessing blast protection in explosive ordnance disposal bomb suits // Int. J. Occup. Saf. Ergon. 2005. Vol. 11. No. 4. P. 347–361. DOI: 10.1080/10803548.2005.11076655 |
| [102] |
Bass CR, Davis M, Rafaels K, et al. A methodology for assessing blast protection in explosive ordnance disposal bomb suits. Int J Occup Saf Ergon. 2005;11(4):347–361. DOI: 10.1080/10803548.2005.11076655 |
| [103] |
Posluszny JA Jr, Onders R, Kerwin AJ, et al. Multicenter review of diaphragm pacing in spinal cord injury: successful not only in weaning from ventilators but also in bridging to independent respiration. J Trauma Acute Care Surg. 2014;76(2):303–309. DOI: 10.1097/TA.0000000000000112 |
| [104] |
Posluszny J.A., Onders R., Kerwin A.J., et al. Multicenter review of diaphragm pacing in spinal cord injury: successful not only in weaning from ventilators but also in bridging to independent respiration // J. Trauma Acute Care Surg. 2014. Vol. 76. No. 2. P. 303–309. DOI: 10.1097/ta.0000000000000112 |
| [105] |
Posluszny JA Jr, Onders R, Kerwin AJ, et al. Multicenter review of diaphragm pacing in spinal cord injury: successful not only in weaning from ventilators but also in bridging to independent respiration. J Trauma Acute Care Surg. 2014;76(2):303–309. DOI: 10.1097/TA.0000000000000112 |
| [106] |
Onders RP. Functional electrical stimulation: restoration of respiratory function. Handb Clin Neurol. 2012;109:275–282. DOI: 10.1016/B978-0-444-52137-8.00017-6 |
| [107] |
Onders R.P. Functional electrical stimulation: restoration of respiratory function // Handb. Clin. Neurol. 2012. Vol. 109. P. 275–282. DOI: 10.1016/b978-0-444-52137-8.00017-6 |
| [108] |
Onders RP. Functional electrical stimulation: restoration of respiratory function. Handb Clin Neurol. 2012;109:275–282. DOI: 10.1016/B978-0-444-52137-8.00017-6 |
| [109] |
DiMarco AF, Onders RP, Ignagni A, et al. Phrenic nerve pacing via intramuscular diaphragm electrodes in tetraplegic subjects. Chest. 2005;127(2):671–678. DOI: 10.1378/chest.127.2.671 |
| [110] |
DiMarco A.F., Onders R.P., Ignagni A., et al. Phrenic nerve pacing via intramuscular diaphragm electrodes in tetraplegic subjects // Chest. 2005. Vol. 127. No. 2. P. 671–678. DOI: 10.1378/chest.127.2.671 |
| [111] |
DiMarco AF, Onders RP, Ignagni A, et al. Phrenic nerve pacing via intramuscular diaphragm electrodes in tetraplegic subjects. Chest. 2005;127(2):671–678. DOI: 10.1378/chest.127.2.671 |
| [112] |
DiMarco AF, Onders RP, Kowalski KE, et al. Phrenic nerve pacing in a tetraplegic patient via intramuscular diaphragm electrodes. Am J Respir Crit Care Med. 2002;166(12 Pt 1):1604–1606. DOI: 10.1164/rccm.200203-175CR |
| [113] |
DiMarco A.F., Onders R.P., Kowalski K.E., et al. Phrenic nerve pacing in a tetraplegic patient via intramuscular diaphragm electrodes // Am. J. Respir. Crit. Care Med. 2002. Vol. 166. No. 12. Pt. I. P. 1604–1606. DOI: 10.1164/rccm.200203-175cr |
| [114] |
DiMarco AF, Onders RP, Kowalski KE, et al. Phrenic nerve pacing in a tetraplegic patient via intramuscular diaphragm electrodes. Am J Respir Crit Care Med. 2002;166(12 Pt 1):1604–1606. DOI: 10.1164/rccm.200203-175CR |
| [115] |
Hormigo KM, Zholudeva LV, Spruance VM, et al. Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury. Exp Neurol. 2017;287(Pt 2):276–287. DOI: 10.1016/j.expneurol.2016.08.018 |
| [116] |
Hormigo K.M., Zholudeva L.V., Spruance V.M., et al. Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury // Exp. Neurol. 2017. Vol. 287. Pt. 2. P. 276–287. DOI: 10.1016/j.expneurol.2016.08.018 |
| [117] |
Hormigo KM, Zholudeva LV, Spruance VM, et al. Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury. Exp Neurol. 2017;287(Pt 2):276–287. DOI: 10.1016/j.expneurol.2016.08.018 |
| [118] |
Kandhari S, Sharma D, Tomar AK, et al. Epidural electrical spinal cord stimulation of the thoracic segments (T2-T5) facilitates respiratory function in patients with complete spinal cord injury. Respir Physiol Neurobiol. 2022;300. DOI: 10.1016/j.resp.2022.103885 |
| [119] |
Kandhari S., Sharma D., Tomar A.K., et al. Epidural electrical spinal cord stimulation of the thoracic segments (T2–T5) facilitates respiratory function in patients with complete spinal cord injury // Respir. Physiol. Neurobiol. 2022. Vol. 300. DOI: 10.1016/j.resp.2022.103885 |
| [120] |
Kandhari S, Sharma D, Tomar AK, et al. Epidural electrical spinal cord stimulation of the thoracic segments (T2-T5) facilitates respiratory function in patients with complete spinal cord injury. Respir Physiol Neurobiol. 2022;300. DOI: 10.1016/j.resp.2022.103885 |
| [121] |
Chang J, Shen D, Wang Y, et al. A review of different stimulation methods for functional reconstruction and comparison of respiratory function after cervical spinal cord injury. Appl Bionics Biomech. 2020;2020. DOI: 10.1155/2020/8882430 |
| [122] |
Chang J., Shen D., Wang Y., et al. A review of different stimulation methods for functional reconstruction and comparison of respiratory function after cervical spinal cord injury // Appl. Bionics. Biomech. 2020. Vol. 2020. DOI: 10.1155/2020/8882430 |
| [123] |
Chang J, Shen D, Wang Y, et al. A review of different stimulation methods for functional reconstruction and comparison of respiratory function after cervical spinal cord injury. Appl Bionics Biomech. 2020;2020. DOI: 10.1155/2020/8882430 |
| [124] |
Satkunendrarajah K, Karadimas SK, Laliberte AM, et al Cervical excitatory neurons sustain breathing after spinal cord injury. Nature. 2018;562(7727):419–422. DOI: 10.1038/s41586-018-0595-z |
| [125] |
Satkunendrarajah K., Karadimas S.K., Laliberte A.M., et al. Cervical excitatory neurons sustain breathing after spinal cord injury // Nature. 2018. Vol. 562. No. 7727. P. 419–422. DOI: 10.1038/s41586-018-0595-z |
| [126] |
Satkunendrarajah K, Karadimas SK, Laliberte AM, et al Cervical excitatory neurons sustain breathing after spinal cord injury. Nature. 2018;562(7727):419–422. DOI: 10.1038/s41586-018-0595-z |
| [127] |
DiMarco AF, Kowalski KE. Electrical activation to the parasternal intercostal muscles during high-frequency spinal cord stimulation in dogs. J Appl Physiol. 2015;118(2):148–155. DOI: 10.1152/japplphysiol.01321.2013 |
| [128] |
DiMarco A.F., Kowalski K.E. Electrical activation to the parasternal intercostal muscles during high-frequency spinal cord stimulation in dogs // J. Appl. Physiol. 2015. Vol. 118. No. 2. P. 148–155. DOI: 10.1152/japplphysiol.01321.2013 |
| [129] |
DiMarco AF, Kowalski KE. Electrical activation to the parasternal intercostal muscles during high-frequency spinal cord stimulation in dogs. J Appl Physiol. 2015;118(2):148–155. DOI: 10.1152/japplphysiol.01321.2013 |
| [130] |
Galeiras Vázquez R, Rascado Sedes P, Mourelo Fariña M, et al. Respiratory management in the patient with spinal cord injury. Biomed Res Int. 2013;2013. DOI: 10.1155/2013/168757 |
| [131] |
Galeiras Vázquez R., Rascado Sedes P., Mourelo Fariña M., et al. Respiratory management in the patient with spinal cord injury // Biomed Res. Int. 2013. Vol. 2013. DOI: 10.1155/2013/168757 |
| [132] |
Galeiras Vázquez R, Rascado Sedes P, Mourelo Fariña M, et al. Respiratory management in the patient with spinal cord injury. Biomed Res Int. 2013;2013. DOI: 10.1155/2013/168757 |
| [133] |
Cavka K, Fuller DD, Tonuzi G, et al. Diaphragm pacing and a model for respiratory rehabilitation after spinal cord injury. J Neurol Phys Ther. 2021;45(3):235–242. DOI: 10.1097/NPT.0000000000000360 |
| [134] |
Cavka K., Fuller D.D., Tonuzi G., et al. Diaphragm pacing and a model for respiratory rehabilitation after spinal cord injury // J. Neurol. Phys. Ther. 2021. Vol. 45. No. 3. P. 235–242. DOI: 10.1097/npt.0000000000000360 |
| [135] |
Cavka K, Fuller DD, Tonuzi G, et al. Diaphragm pacing and a model for respiratory rehabilitation after spinal cord injury. J Neurol Phys Ther. 2021;45(3):235–242. DOI: 10.1097/NPT.0000000000000360 |
| [136] |
Sharma V, Jafri H, Roy N, et al. Thirty-six-month follow-up of diaphragm pacing with phrenic nerve stimulation for ventilator dependence in traumatic tetraplegia: the way forward for spinal cord injury rehabilitation in a developing country. Asian Spine J. 2021;15(6):874–880. DOI: 10.31616/asj.2020.0227 |
| [137] |
Sharma V., Jafri H., Roy N., et al. Thirty-six-month follow-up of diaphragm pacing with phrenic nerve stimulation for ventilator dependence in traumatic tetraplegia: the way forward for spinal cord injury rehabilitation in a developing country // Asian Spine J. 2021. Vol. 15. No. 6. P. 874–880. DOI: 10.31616/asj.2020.0227 |
| [138] |
Sharma V, Jafri H, Roy N, et al. Thirty-six-month follow-up of diaphragm pacing with phrenic nerve stimulation for ventilator dependence in traumatic tetraplegia: the way forward for spinal cord injury rehabilitation in a developing country. Asian Spine J. 2021;15(6):874–880. DOI: 10.31616/asj.2020.0227 |
| [139] |
Gorgey AS, Lai RE, Khalil RE, et al. Neuromuscular electrical stimulation resistance training enhances oxygen uptake and ventilatory efficiency independent of mitochondrial complexes after spinal cord injury: a randomized clinical trial. J Appl Physiol. 2021;131(1):265–276. DOI: 10.1152/japplphysiol.01029.2020 |
| [140] |
Gorgey A.S., Lai R.E., Khalil R.E., et al. Neuromuscular electrical stimulation resistance training enhances oxygen uptake and ventilatory efficiency independent of mitochondrial complexes after spinal cord injury: a randomized clinical trial // J. Appl. Physiol. 2021. Vol. 131. No. 1. P. 265–276. DOI: 10.1152/japplphysiol.01029.2020 |
| [141] |
Gorgey AS, Lai RE, Khalil RE, et al. Neuromuscular electrical stimulation resistance training enhances oxygen uptake and ventilatory efficiency independent of mitochondrial complexes after spinal cord injury: a randomized clinical trial. J Appl Physiol. 2021;131(1):265–276. DOI: 10.1152/japplphysiol.01029.2020 |
| [142] |
McCaughey EJ, Berry HR, McLean AN, et al. Abdominal functional electrical stimulation to assist ventilator weaning in acute tetraplegia: a cohort study. PLoS One. 2015;10(6). DOI: 10.1371/journal.pone.0128589 |
| [143] |
McCaughey E.J., Berry H.R., McLean A.N., et al. Abdominal functional electrical stimulation to assist ventilator weaning in acute tetraplegia: a cohort study // PLoS One. 2015. Vol. 10. No. 6. DOI: 10.1371/journal.pone.0128589 |
| [144] |
McCaughey EJ, Berry HR, McLean AN, et al. Abdominal functional electrical stimulation to assist ventilator weaning in acute tetraplegia: a cohort study. PLoS One. 2015;10(6). DOI: 10.1371/journal.pone.0128589 |
| [145] |
McCaughey EJ, Borotkanics RJ, Gollee H, et al. Abdominal functional electrical stimulation to improve respiratory function after spinal cord injury: a systematic review and meta-analysis. Spinal Cord. 2016;54(9):628–639. DOI: 10.1038/sc.2016.31 |
| [146] |
McCaughey E.J., Borotkanics R.J., Gollee H., et al. Abdominal functional electrical stimulation to improve respiratory function after spinal cord injury: a systematic review and meta-analysis // Spinal Cord. 2016. Vol. 54. No. 9. P. 628–639. DOI: 10.1038/sc.2016.31 |
| [147] |
McCaughey EJ, Borotkanics RJ, Gollee H, et al. Abdominal functional electrical stimulation to improve respiratory function after spinal cord injury: a systematic review and meta-analysis. Spinal Cord. 2016;54(9):628–639. DOI: 10.1038/sc.2016.31 |
| [148] |
McBain RA, Boswell-Ruys CL, Lee BB, et al. Abdominal muscle training can enhance cough after spinal cord injury. Neurorehabil Neural Repair. 2013;27(9):834–843. DOI: 10.1177/1545968313496324 |
| [149] |
McBain R.A., Boswell-Ruys C.L., Lee B.B., et al. Abdominal muscle training can enhance cough after spinal cord injury // Neurorehabil. Neural Repair. 2013. Vol. 27. No. 9. P. 834–843. DOI: 10.1177/1545968313496324 |
| [150] |
McBain RA, Boswell-Ruys CL, Lee BB, et al. Abdominal muscle training can enhance cough after spinal cord injury. Neurorehabil Neural Repair. 2013;27(9):834–843. DOI: 10.1177/1545968313496324 |
| [151] |
McCaughey EJ, Butler JE, McBain RA, et al. Abdominal functional electrical stimulation to augment respiratory function in spinal cord injury. Top Spinal Cord Inj Rehabil. 2019;25(2):105–111. DOI: 10.1310/sci2502-105 |
| [152] |
McCaughey E.J., Butler J.E., McBain R.A., et al. Abdominal functional electrical stimulation to augment respiratory function in spinal cord injury // Top Spinal Cord Inj. Rehabil. 2019. Vol. 25. No. 2. P. 105–111. DOI: 10.1310/sci2502-105 |
| [153] |
McCaughey EJ, Butler JE, McBain RA, et al. Abdominal functional electrical stimulation to augment respiratory function in spinal cord injury. Top Spinal Cord Inj Rehabil. 2019;25(2):105–111. DOI: 10.1310/sci2502-105 |
| [154] |
DiMarco AF, Kowalski KE, Geertman RT, et al. Spinal cord stimulation: a new method to produce an effective cough in patients with spinal cord injury. Am J Respir Crit Care Med. 2006;173(12):1386–1389. DOI: 10.1164/rccm.200601-097CR |
| [155] |
DiMarco A.F., Kowalski K.E., Geertman R.T., et al. Spinal cord stimulation: a new method to produce an effective cough in patients with spinal cord injury // Am. J. Respir. Crit. Care Med. 2006. Vol. 173. No. 12. P. 1386–1389. DOI: 10.1164/rccm.200601-097cr |
| [156] |
DiMarco AF, Kowalski KE, Geertman RT, et al. Spinal cord stimulation: a new method to produce an effective cough in patients with spinal cord injury. Am J Respir Crit Care Med. 2006;173(12):1386–1389. DOI: 10.1164/rccm.200601-097CR |
| [157] |
Duru PO, Tillakaratne NJ, Kim JA, et al. Spinal neuronal activation during locomotor-like activity enabled by epidural stimulation and 5-hydroxytryptamine agonists in spinal rats. J Neurosci Res. 2015;93(8):1229–1239. DOI: 10.1002/jnr.23579 |
| [158] |
Duru P.O., Tillakaratne N.J., Kim J.A., et al. Spinal neuronal activation during locomotor-like activity enabled by epidural stimulation and 5-hydroxytryptamine agonists in spinal rats // J. Neurosci. Res. 2015. Vol. 93. No. 8. P. 1229–1239. DOI: 10.1002/jnr.23579 |
| [159] |
Duru PO, Tillakaratne NJ, Kim JA, et al. Spinal neuronal activation during locomotor-like activity enabled by epidural stimulation and 5-hydroxytryptamine agonists in spinal rats. J Neurosci Res. 2015;93(8):1229–1239. DOI: 10.1002/jnr.23579 |
| [160] |
Edgerton VR, Harkema S. Epidural stimulation of the spinal cord in spinal cord injury: current status and future challenges. Expert Rev Neurother. 2011;11(10):1351–1353. DOI: 10.1586/ern.11.129 |
| [161] |
Edgerton V.R., Harkema S. Epidural stimulation of the spinal cord in spinal cord injury: current status and future challenges // Expert. Rev. Neurother. 2011. Vol. 11. No. 10. P. 1351–1353. DOI: 10.1586/ern.11.129 |
| [162] |
Edgerton VR, Harkema S. Epidural stimulation of the spinal cord in spinal cord injury: current status and future challenges. Expert Rev Neurother. 2011;11(10):1351–1353. DOI: 10.1586/ern.11.129 |
| [163] |
Toriya VG, Vissarionov SV, Savina MV, et al. Surgical treatment of a patient with erythromelalgia (Mitchell’s syndrome) using invasive spinal cord stimulation: a clinical case. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2022;10(2):197–205. (In Russ.) DOI: 10.17816/PTORS108045 |
| [164] |
Тория В.Г., Виссарионов С.В., Савина М.В., и др. Хирургическое лечение пациента с эритромелалгией (синдром Митчелла) с применением инвазивной стимуляции спинного мозга. Клиническое наблюдение // Ортопедия, травматология и восстановительная хирургия детского возраста. 2022. Т. 10. № 2. C. 197–205. DOI: 10.17816/PTORS108045 |
| [165] |
Toriya VG, Vissarionov SV, Savina MV, et al. Surgical treatment of a patient with erythromelalgia (Mitchell’s syndrome) using invasive spinal cord stimulation: a clinical case. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2022;10(2):197–205. (In Russ.) DOI: 10.17816/PTORS108045 |
| [166] |
Kowalski KE, Romaniuk JR, Kirkwood PA, et al. Inspiratory muscle activation via ventral lower thoracic high-frequency spinal cord stimulation. J Appl Physiol. 2019;126(4):977–983. DOI: 10.1152/japplphysiol.01054.2018 |
| [167] |
Kowalski K.E., Romaniuk J.R., Kirkwood P.A., et al. Inspiratory muscle activation via ventral lower thoracic high-frequency spinal cord stimulation // J. Appl. Physiol. 2019. Vol. 126. No. 4. P. 977–983. DOI: 10.1152/japplphysiol.01054.2018 |
| [168] |
Kowalski KE, Romaniuk JR, Kirkwood PA, et al. Inspiratory muscle activation via ventral lower thoracic high-frequency spinal cord stimulation. J Appl Physiol. 2019;126(4):977–983. DOI: 10.1152/japplphysiol.01054.2018 |
| [169] |
DiMarco AF, Kowalski KE, Geertman RT, et al. Lower thoracic spinal cord stimulation to restore cough in patients with spinal cord injury: results of a National Institutes of Health-Sponsored clinical trial. Part II: Clinical outcomes. Arch Phys Med Rehabil. 2009;90(5):726–732. DOI: 10.1016/j.apmr.2008.11.014 |
| [170] |
DiMarco A.F., Kowalski K.E., Geertman R.T., et al. Lower thoracic spinal cord stimulation to restore cough in patients with spinal cord injury: results of a national institutes of health-sponsored clinical trial. Part II: Clinical outcomes // Arch. Phys. Med. Rehabil. 2009. Vol. 90. No. 5. P. 726–732. DOI: 10.1016/j.apmr.2008.11.014 |
| [171] |
DiMarco AF, Kowalski KE, Geertman RT, et al. Lower thoracic spinal cord stimulation to restore cough in patients with spinal cord injury: results of a National Institutes of Health-Sponsored clinical trial. Part II: Clinical outcomes. Arch Phys Med Rehabil. 2009;90(5):726–732. DOI: 10.1016/j.apmr.2008.11.014 |
| [172] |
DiMarco AF, Kowalski KE. Intercostal muscle pacing with high frequency spinal cord stimulation in dogs. Respir Physiol Neurobiol. 2010;171(3):218–224. DOI: 10.1016/j.resp.2010.03.017 |
| [173] |
DiMarco A.F., Kowalski K.E. Intercostal muscle pacing with high frequency spinal cord stimulation in dogs // Respir. Physiol. Neurobiol. 2010. Vol. 171. No. 3. P. 218–224. DOI: 10.1016/j.resp.2010.03.017 |
| [174] |
DiMarco AF, Kowalski KE. Intercostal muscle pacing with high frequency spinal cord stimulation in dogs. Respir Physiol Neurobiol. 2010;171(3):218–224. DOI: 10.1016/j.resp.2010.03.017 |
| [175] |
DiMarco AF, Kowalski KE. High-frequency spinal cord stimulation of inspiratory muscles in dogs: a new method of inspiratory muscle pacing. J Appl Physiol. 2009;107(3):662–669. DOI: 10.1152/japplphysiol.00252.2009 |
| [176] |
DiMarco A.F., Kowalski K.E. High-frequency spinal cord stimulation of inspiratory muscles in dogs: a new method of inspiratory muscle pacing // J. Appl. Physiol. 2009. Vol. 107. No. 3. P. 662–669. DOI: 10.1152/japplphysiol.00252.2009 |
| [177] |
DiMarco AF, Kowalski KE. High-frequency spinal cord stimulation of inspiratory muscles in dogs: a new method of inspiratory muscle pacing. J Appl Physiol. 2009;107(3):662–669. DOI: 10.1152/japplphysiol.00252.2009 |
| [178] |
Sunshine MD, Cassarà AM, Neufeld E, et al. Restoration of breathing after opioid overdose and spinal cord injury using temporal interference stimulation. Commun Biol. 2021;4(1):107. DOI: 10.1038/s42003-020-01604-x |
| [179] |
Sunshine M.D., Cassarà A.M., Neufeld E., et al. Restoration of breathing after opioid overdose and spinal cord injury using temporal interference stimulation // Commun. Biol. 2021. Vol. 4. No. 1. P. 107. DOI: 10.1038/s42003-020-01604-x |
| [180] |
Sunshine MD, Cassarà AM, Neufeld E, et al. Restoration of breathing after opioid overdose and spinal cord injury using temporal interference stimulation. Commun Biol. 2021;4(1):107. DOI: 10.1038/s42003-020-01604-x |
| [181] |
DiMarco AF, Kowalski KE, Geertman RT, et al. Lower thoracic spinal cord stimulation to restore cough in patients with spinal cord injury: results of a National Institutes of Health-sponsored clinical trial. Part I: Methodology and effectiveness of expiratory muscle activation. Arch Phys Med Rehabil. 2009;90(5):717–725. DOI: 10.1016/j.apmr.2008.11.013 |
| [182] |
DiMarco A.F., Kowalski K.E., Geertman R.T., et al. Lower thoracic spinal cord stimulation to restore cough in patients with spinal cord injury: results of a national institutes of health-sponsored clinical trial. Part I: Methodology and effectiveness of expiratory muscle activation // Arch. Phys. Med. Rehabil. 2009. Vol. 90. No. 5. P. 717–725. DOI: 10.1016/j.apmr.2008.11.013 |
| [183] |
DiMarco AF, Kowalski KE, Geertman RT, et al. Lower thoracic spinal cord stimulation to restore cough in patients with spinal cord injury: results of a National Institutes of Health-sponsored clinical trial. Part I: Methodology and effectiveness of expiratory muscle activation. Arch Phys Med Rehabil. 2009;90(5):717–725. DOI: 10.1016/j.apmr.2008.11.013 |
| [184] |
Gerasimenko Y, Gorodnichev R, Moshonkina T, et al. Transcutaneous electrical spinal-cord stimulation in humans. Ann Phys Rehabil Med. 2015;58(4):225–231. DOI: 10.1016/j.rehab.2015.05.003 |
| [185] |
Gerasimenko Y., Gorodnichev R., Moshonkina T., et al. Transcutaneous electrical spinal-cord stimulation in humans // Ann. Phys. Rehabil. Med. 2015. Vol. 58. No. 4. P. 225-231. DOI: 10.1016/j.rehab.2015.05.003 |
| [186] |
Gerasimenko Y, Gorodnichev R, Moshonkina T, et al. Transcutaneous electrical spinal-cord stimulation in humans. Ann Phys Rehabil Med. 2015;58(4):225–231. DOI: 10.1016/j.rehab.2015.05.003 |
| [187] |
Gerasimenko YP, Lu DC, Modaber M, et al. Noninvasive reactivation of motor descending control after paralysis. J Neurotrauma. 2015;32(24):1968–1980. DOI: 10.1089/neu.2015.4008 |
| [188] |
Gerasimenko Y.P., Lu D.C., Modaber M., et al. Noninvasive reactivation of motor descending control after paralysis // J. Neurotrauma. 2015. Vol. 32. No. 24. P. 1968–1680. DOI: 10.1089/neu.2015.4008 |
| [189] |
Gerasimenko YP, Lu DC, Modaber M, et al. Noninvasive reactivation of motor descending control after paralysis. J Neurotrauma. 2015;32(24):1968–1980. DOI: 10.1089/neu.2015.4008 |
| [190] |
Ladenbauer J, Minassian K, Hofstoetter US, et al. Stimulation of the human lumbar spinal cord with implanted and surface electrodes: a computer simulation study. IEEE Trans Neural Syst Rehabil Eng. 2010;18(6):637–645. DOI: 10.1109/TNSRE.2010.2054112 |
| [191] |
Ladenbauer J., Minassian K., Hofstoetter U.S., et al. Stimulation of the human lumbar spinal cord with implanted and surface electrodes: a computer simulation study // IEEE Trans. Neural. Syst. Rehabil. Eng. 2010. Vol. 18. No. 6. P. 637–645. DOI: 10.1109/tnsre.2010.2054112 |
| [192] |
Ladenbauer J, Minassian K, Hofstoetter US, et al. Stimulation of the human lumbar spinal cord with implanted and surface electrodes: a computer simulation study. IEEE Trans Neural Syst Rehabil Eng. 2010;18(6):637–645. DOI: 10.1109/TNSRE.2010.2054112 |
| [193] |
Inanici F, Samejima S, Gad P, et al. Transcutaneous electrical spinal stimulation promotes long-term recovery of upper extremity function in chronic tetraplegia. IEEE Trans Neural Syst Rehabil Eng. 2018;26(6):1272–1278. DOI: 10.1109/TNSRE.2018.2834339 |
| [194] |
Inanici F., Samejima S., Gad P., et al. Transcutaneous electrical spinal stimulation promotes long-term recovery of upper extremity function in chronic tetraplegia // IEEE Trans. Neural. Syst. Rehabil. Eng. 2018. Vol. 26. No. 6. P. 1272–1278. DOI: 10.1109/tnsre.2018.2834339 |
| [195] |
Inanici F, Samejima S, Gad P, et al. Transcutaneous electrical spinal stimulation promotes long-term recovery of upper extremity function in chronic tetraplegia. IEEE Trans Neural Syst Rehabil Eng. 2018;26(6):1272–1278. DOI: 10.1109/TNSRE.2018.2834339 |
| [196] |
Inanici F, Brighton LN, Samejima S, et al. Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury. IEEE Trans Neural Syst Rehabil Eng. 2021;29:310–319. DOI: 10.1109/TNSRE.2021.3049133 |
| [197] |
Inanici F., Brighton L.N., Samejima S., et al. Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury // IEEE Trans. Neural. Syst. Rehabil. Eng. 2021. Vol. 29. P. 310–319. DOI: 10.1109/tnsre.2021.3049133 |
| [198] |
Inanici F, Brighton LN, Samejima S, et al. Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury. IEEE Trans Neural Syst Rehabil Eng. 2021;29:310–319. DOI: 10.1109/TNSRE.2021.3049133 |
| [199] |
Zhang F, Momeni K, Ramanujam A, et al. Cervical spinal cord transcutaneous stimulation improves upper extremity and hand function in people with complete tetraplegia: a case study. IEEE Trans Neural Syst Rehabil Eng. 2020;28(12):3167–3174. DOI: 10.1109/TNSRE.2020.3048592 |
| [200] |
Zhang F., Momeni K., Ramanujam A., et al. Cervical spinal cord transcutaneous stimulation improves upper extremity and hand function in people with complete tetraplegia: a case study // IEEE Trans. Neural. Syst. Rehabil. Eng. 2020. Vol. 28. No. 12. DOI: 10.1109/tnsre.2020.3048592 |
| [201] |
Zhang F, Momeni K, Ramanujam A, et al. Cervical spinal cord transcutaneous stimulation improves upper extremity and hand function in people with complete tetraplegia: a case study. IEEE Trans Neural Syst Rehabil Eng. 2020;28(12):3167–3174. DOI: 10.1109/TNSRE.2020.3048592 |
| [202] |
Gad P, Kreydin E, Zhong H, et al. Enabling respiratory control after severe chronic tetraplegia: an exploratory case study. J Neurophysiol. 2020;124(3):774–780. DOI: 10.1152/jn.00320.2020 |
| [203] |
Gad P., Kreydin E., Zhong H., et al. Enabling respiratory control after severe chronic tetraplegia: an exploratory case study // J. Neurophysiol. 2020. Vol. 124. No. 3. P. 774–780. DOI: 10.1152/jn.00320.2020 |
| [204] |
Gad P, Kreydin E, Zhong H, et al. Enabling respiratory control after severe chronic tetraplegia: an exploratory case study. J Neurophysiol. 2020;124(3):774–780. DOI: 10.1152/jn.00320.2020 |
| [205] |
Minyaeva AV, Moiseev SA, Pukhov AM, et al. Response of external inspiration to the movements induced by transcutaneous spinal cord stimulation. Hum Physiol. 2017;43(5):524–531. DOI: 10.1134/S0362119717050115 |
| [206] |
Minyaeva A., Moiseev S.A., Pukhov A.M., et al. Response of external inspiration to the movements induced by transcutaneous spinal cord stimulation // Hum. Physiol. 2017. Vol. 43. No. 5. P. 524–531. DOI: 10.1134/s0362119717050115 |
| [207] |
Minyaeva AV, Moiseev SA, Pukhov AM, et al. Response of external inspiration to the movements induced by transcutaneous spinal cord stimulation. Hum Physiol. 2017;43(5):524–531. DOI: 10.1134/S0362119717050115 |
Toriya V.G., Vissarionov S.V., Savina M.V., Baindurashvili A.G.
/
| 〈 |
|
〉 |