Experimental evaluation of the efficiency of chitosan matrixes under conditions of modeling of bone defect in vivo (preliminary message)

Sergey V. Vissarionov , Marat S. Asadulaev , Anton S. Shabunin , Vladimir E. Yudin , Moisei B. Paneiakh , Pavel V. Popryadukhin , Yury A. Novosad , Vasili A. Gordienko , Aleksandr G. Aganesov

Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2020, Vol. 8 ›› Issue (1) : 53 -62.

PDF (576KB)
Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2020, Vol. 8 ›› Issue (1) : 53 -62. DOI: 10.17816/PTORS16480
Experimental and theoretical research
research-article

Experimental evaluation of the efficiency of chitosan matrixes under conditions of modeling of bone defect in vivo (preliminary message)

Author information +
History +
PDF (576KB)

Abstract

Background. Despite the wide range of studies, the development of osteoplastic material, which has not only osteoconductive but also osteoinductive properties, remains an extremely topical issue in modern medical materials science. This work is devoted to experimental evaluation of the effectiveness of synthetic osteoplastic composite material based on chitosan and hydroxyapatite.

Aim. This study aimed to determine the effects of spongy implants based on chitosan and its composite with hydroxyapatite nanoparticles in an amount of 50 wt. % on early osteogenesis in the area of the through defect of the ileum.

Materials and methods. The studied materials were sponge implants based on chitosan and its composite with hydroxyapatite nanoparticles in an amount of 50 wt. %. Comparison groups include those without implant placement and those with replacement with commercial Reprobone osteoplastic material. Materials were implanted into the zone of the through defect of the ileum of rabbits for a period of 28 days.

Results. A high rate of resorption of materials based on chitosan in bone tissue and active growth of reticulofibrotic bone tissue along the edges of the defect was established, and the formation of cartilaginous islands and bone marrow was recorded in the group of chitosan implants with hydroxyapatite. The aseptic effect was observed with the use of implants made of chitosan and hydroxyapatite.

Conclusions. The data obtained allow us to argue about the osteoconductivity of the studied materials and the prospects for further development in this direction.

Keywords

bone defect / bioresorbable material / experiment / defect modeling / traumatology / orthopedics

Cite this article

Download citation ▾
Sergey V. Vissarionov, Marat S. Asadulaev, Anton S. Shabunin, Vladimir E. Yudin, Moisei B. Paneiakh, Pavel V. Popryadukhin, Yury A. Novosad, Vasili A. Gordienko, Aleksandr G. Aganesov. Experimental evaluation of the efficiency of chitosan matrixes under conditions of modeling of bone defect in vivo (preliminary message). Pediatric Traumatology, Orthopaedics and Reconstructive Surgery, 2020, 8(1): 53-62 DOI:10.17816/PTORS16480

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Анастасиева Е.А., Садовой М.А., Воропаева А.А., Кирилова И.А. Использование ауто- и аллотрансплантатов для замещения костных дефектов при резекциях опухолей костей // Травматология и ортопедия России. – 2017. – Т. 23. – № 3. – С. 148–155. [Anastasieva EA, Sadovoy MA, Voropaeva AA, Kirilova IA. Reconstruction of bone defects after tumor resection by autoand allografts (review of literature). Travmatologiia i ortopediia Rossii. 2017;(23):148-155. (In Russ.)]

[2]

Котельников Г.П., Колсанов А.В., Щербовских А.Е. Реконструкция посттравматических и постоперационных дефектов нижней челюсти // Хирургия. Журнал им. Н.И. Пирогова. – 2017. – № 7. – С. 69–72. [Kotel’nikov GP, Kolsanov AV, Shcherbovskikh AE. Reconstruction of posttraumatic and postoperative defects of lower jaw. Khirurgiia (Mosk). 2017;(7):69-72. (In Russ.)]. https://doi.org/10.17116/hirurgia2017769-72.

[3]

Garcia-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 2015;81:112-121. https://doi.org/10.1016/j.bone.2015.07.007.

[4]

Гайворонский И.В., Губочкин Н.Г., Микитюк С.И., и др. Анатомические обоснования формирования костных трансплантатов на мышечно-сосудистой ножке в нижней трети предплечья и возможностей их перемещения // Вестник Российской военно-медицинской академии. – 2016. – Т. 3. – № 55. – С. 129–134. [Gayvoronskiy IV, Gubochkin NG, Mikityuk SI. Anatomic substantiation of formation of bone grafts on muscle-pedicle in lower third of the forearm and the possibility of their transplantation. Vestnik Rossiiskoi voenno-meditsinskoi akademii. 2016;3(55):129-134. (In Russ.)]

[5]

Предеин Ю.А., Рерих В.В. Костные и клеточные имплантаты для замещения дефектов кости // Современные проблемы науки и образования. – 2016. – № 6. – С. 132–146. [Predein YA, Rerikh VV. Bone and cellular implants for replacement bone defects. Sovremennye problemy nauki i obrazovaniya. 2016;(6):132-146. (In Russ.)]

[6]

Лекишвили М.В., Склянчук Е.Д., Акатов В.С., и др. Костнопластические остеоиндуктивные материалы в травматологии и ортопедии // Гений ортопедии. – 2015. – № 4. – С. 61–67. [Lekishvili MV, Sklyanchuk ED, Akatov VS, et al. Osteoplastic osteoinductive materials in traumatology and orthopaedics. Genij ortopedii. 2015;(4):61-67. (In Russ.)]

[7]

Хватов В.Б., Свищев А.В., Ваза А.Ю., и др. Способ изготовления лиофилизированного аллотрансплантата кости // Трансплантология. – 2016. – № 1. – С. 13–18. [Khvatov VB, Svishchev AV, Vaza AY. Sposob Method of manufacturing a lyophilized allograft bone. Transplantologiia. 2016;(1):13-18. (In Russ.)]

[8]

Кирилова И.А., Подорожная В.Т., Шаркеев Ю.П., и др. Свойства деминерализованного костного матрикса для биоинженерии тканей // Комплексные проблемы сердечно-сосудистых заболеваний. – 2017. – Т. 6. – № 3. – С. 25–36. [Kirilova IA, Podorozhnaya VT, Sharkeev YP, et al. Properties of the demineralized bone matrix for bioenginery of tissue. Copmplex issues of cardiovascular diseases. 2017;6(3):25-36. (In Russ.)]

[9]

Кирилова И.А., Садовой М.А., Подорожная В.Т. Сравнительная характеристика материалов для костной пластики: состав и свойства // Хирургия позвоночника. – 2012. – № 3. – С. 72–83. [Kirilova IA, Sadovoy MA, Podorozhnaya VT. Comparative characteristics of materials for bone grafting: composition and properties. Spine surgery. 2012;(3):72-83. (In Russ.)]

[10]

Кирилова И.А. Деминерализованный костный трансплантат как стимулятор остеогенеза: современные концепции // Хирургия позвоночника. – 2004. – № 3 – С. 105–110. [Kirilova IA. Demineralized bone graft as an osteogenesis stimulator: current literature review. Spine surgery. 2004;(3):105-110. (In Russ.)]

[11]

Roseti L, Parisi V, Petretta M, et al. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C Mater Biol Appl. 2017;78:1246-1262. https://doi.org/10.1016/j.msec.2017.05.017.

[12]

Deepthi S, Venkatesan J, Kim SK, et al. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int J Biol Macromol. 2016;93(Pt B):1338-1353. https://doi.org/10.1016/ j.ijbiomac.2016.03.041.

[13]

Balagangadharan K, Dhivya S, Selvamurugan N. Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol. 2017;104(Pt B):1372-1382. https://doi.org/10.1016/j.ijbiomac.2016.12.046.

[14]

Logith Kumar R, Keshav Narayan A, Dhivya S, et al. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym. 2016;151:172-188. https://doi.org/10.1016/j.carbpol.2016.05.049.

[15]

Dobrovolskaya IP, Yudin VE, Popryadukhin PV, et al. In vivo studies of chitosan fiber resorption. J Appl Cosmetol. 2015;33:81-87.

[16]

Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31(7):603-632. https://doi.org/10.1016/j.progpolymsci.2006.06.001.

[17]

Sharma C, Dinda AK, Potdar PD, et al. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2016;64:416-427. https://doi.org/10.1016/ j.msec.2016.03.060.

[18]

Zhang J, Liu G, Wu Q, et al. Novel mesoporous hydroxyapatite/chitosan composite for bone repair. J Bionic Eng. 2012;9(2):243-251. https://doi.org/10.1016/s1672-6529(11)60117-0.

[19]

Danoux CB, Barbieri D, Yuan H, et al. In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Biomatter. 2014;4:e27664. https://doi.org/10.4161/biom.27664.

[20]

Cox SC, Thornby JA, Gibbons GJ, et al. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2015;47:237-247. https://doi.org/10.1016/j.msec.2014.11.024.

[21]

Dutta SR, Passi D, Singh P, Bhuibhar A. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review. Ir J Med Sci. 2015;184(1):101-106. https://doi.org/10.1007/s11845-014-1199-8.

[22]

Ratnayake JTB, Mucalo M, Dias GJ. Substituted hydroxyapatites for bone regeneration: A review of current trends. J Biomed Mater Res B Appl Biomater. 2017;105(5):1285-1299. https://doi.org/10.1002/jbm.b.33651.

[23]

Oliveira HL, Da Rosa WLO, Cuevas-Suárez CE, et al. Histological evaluation of bone repair with hydroxyapatite: a systematic review. Calcif Tissue Int. 2017;101(4):341-354. https://doi.org/10.1007/s00223-017-0294-z.

RIGHTS & PERMISSIONS

Vissarionov S.V., Asadulaev M.S., Shabunin A.S., Yudin V.E., Paneiakh M.B., Popryadukhin P.V., Novosad Y.A., Gordienko V.A., Aganesov A.G.

AI Summary AI Mindmap
PDF (576KB)

455

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/