Principles of the differential diagnosis of achondroplasia and pseudoachondroplasia

Tatiana V. Markova , Vladimir M. Kenis , Evgenii V. Melchenko , Dmitry A. Reshchikov , Aynur E. Alieva , Darya V. Osipova , Liudmila A. Bessonova , Tatiana S. Nagornova , Natalya N. Vasserman , Natalya Yu. Ogorodova , Olga A. Shchagina , Elena L. Dadali

Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2023, Vol. 11 ›› Issue (1) : 17 -28.

PDF (665KB)
Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2023, Vol. 11 ›› Issue (1) : 17 -28. DOI: 10.17816/PTORS114730
Clinical studies
research-article

Principles of the differential diagnosis of achondroplasia and pseudoachondroplasia

Author information +
History +
PDF (665KB)

Abstract

BACKGROUND: Achondroplasia and pseudoachondroplasia are hereditary systemic skeletal dysplasias characterized by a certain similarity of clinical manifestations; however, they have different etiopathogenetic mechanisms and confirmation methods for molecular genetic diagnosis. Their common phenotypic features often make differential diagnosis difficult during the clinical examination of patients, planning DNA diagnostics, and appropriate time detection of neurosurgical and orthopedic complications.

AIM: This study aimed to identify differential diagnostic criteria for achondroplasia and pseudoachondroplasia and optimize the strategy for their molecular genetic diagnosis.

MATERIALS AND METHODS: A comprehensive examination of 76 children from 74 unrelated families aged 1 month to 18 years with phenotypic signs of achondroplasia and pseudoachondroplasia was conducted. To clarify the diagnosis through genealogical and amnestic analysis, clinical and neurological examination data according to the standard method and radiographic data were used. Molecular genetic confirmation of diseases was conducted by searching for hotspot mutations in the FGFR3 gene, assessing the number of GAC repeats located in exon 13 of the COMP gene, and new-generation sequencing of the target panel consisting of 166 genes responsible for hereditary skeletal pathology.

RESULTS: Based on a comparative analysis of the specific phenotypic characteristics, the criteria for the differential diagnosis of achondroplasia and pseudoachondroplasia were identified. The leading signs of achondroplasia are disproportionate nanism from birth, macrocrania, and facial dysmorphism, which are not specific to pseudoachondroplasia. Certain radiological features are essential in the differential diagnosis of pseudoachondroplasia, which should be considered when referring to patients for molecular genetic analysis. A deletion of the GAC repeat c.1417_1419del in the COMP gene was identified in 27% of patients with pseudoachondroplasia. Thus, the analyses of these two mutations in FGFR3 and COMP were conducted first. In the absence of target mutations, further diagnostic search should be continued with a target panel consisting of 166 genes responsible for hereditary skeletal pathology or whole-exome sequencing.

CONCLUSIONS: The analysis of the clinical, radiological, and molecular genetic characteristics of patients with achondroplasia and pseudoachondroplasia, together with the literature data analysis, made it possible to clarify the differential diagnostic criteria for these diseases and optimize the algorithm for their molecular genetic diagnosis.

Keywords

achondroplasia / pseudoachondroplasia / FGFR3 gene / COMP gene

Cite this article

Download citation ▾
Tatiana V. Markova, Vladimir M. Kenis, Evgenii V. Melchenko, Dmitry A. Reshchikov, Aynur E. Alieva, Darya V. Osipova, Liudmila A. Bessonova, Tatiana S. Nagornova, Natalya N. Vasserman, Natalya Yu. Ogorodova, Olga A. Shchagina, Elena L. Dadali. Principles of the differential diagnosis of achondroplasia and pseudoachondroplasia. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery, 2023, 11(1): 17-28 DOI:10.17816/PTORS114730

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pauli RM. Achondroplasia: a comprehensive clinical review. Orphanet J Rare Dis. 2019;14(1). DOI: 10.1186/S13023-018-0972-6

[2]

Pauli R.M. Achondroplasia: a comprehensive clinical review // Orphanet J. Rare Dis. 2019. Vol. 14. No. 1. DOI: 10.1186/S13023-018-0972-6

[3]

Pauli RM. Achondroplasia: a comprehensive clinical review. Orphanet J Rare Dis. 2019;14(1). DOI: 10.1186/S13023-018-0972-6

[4]

Pseudoachondroplasia. [Internet]. [cited 2023 Feb 24]. Доступ по ссылке: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=7503

[5]

Pseudoachondroplasia. [Internet]. [дата обращения 24.02.2023]. Доступ по ссылке: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=750

[6]

Pseudoachondroplasia. [Internet]. [cited 2023 Feb 24]. Доступ по ссылке: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=7503

[7]

Horton WA, Hall JG, Hecht JT. Achondroplasia. Lancet (London, England). 2007;370(9582):162−172. DOI: 10.1016/S0140-6736(07)61090-3

[8]

Horton W.A., Hall J.G., Hecht J.T. Achondroplasia // Lancet (London, England). 2007. Vol. 370. No. 9582. P. 162−172. DOI: 10.1016/S0140-6736(07)61090-3

[9]

Horton WA, Hall JG, Hecht JT. Achondroplasia. Lancet (London, England). 2007;370(9582):162−172. DOI: 10.1016/S0140-6736(07)61090-3

[10]

Rousseau F, Bonaventure J, Legeai-Mallet L, et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nat. 1994;371(6494):252−254. DOI: 10.1038/371252a0

[11]

Rousseau F., Bonaventure J., Legeai-Mallet L., et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia // Nat. 1994. Vol. 371. No. 6494. P. 252−254. DOI: 10.1038/371252a0

[12]

Rousseau F, Bonaventure J, Legeai-Mallet L, et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nat. 1994;371(6494):252−254. DOI: 10.1038/371252a0

[13]

L’Hôte CGM, Knowles MA. Cell responses to FGFR3 signalling: growth, differentiation and apoptosis. Exp Cell Res. 2005;304(2):417−431. DOI: 10.1016/J.YEXCR.2004.11.012

[14]

L’Hôte C.G.M., Knowles M.A. Cell responses to FGFR3 signalling: growth, differentiation and apoptosis // Exp. Cell Res. 2005. Vol. 304. No. 2. P. 417−431. DOI: 10.1016/J.YEXCR.2004.11.012

[15]

L’Hôte CGM, Knowles MA. Cell responses to FGFR3 signalling: growth, differentiation and apoptosis. Exp Cell Res. 2005;304(2):417−431. DOI: 10.1016/J.YEXCR.2004.11.012

[16]

Horton WA, Degnin CR. FGFs in endochondral skeletal development. Trends Endocrinol Metab. 2009;20(7):341−348. DOI: 10.1016/J.TEM.2009.04.003

[17]

Horton W.A., Degnin C.R. FGFs in endochondral skeletal development // Trends Endocrinol. Metab. 2009. Vol. 20. No. 7. P. 341−348. DOI: 10.1016/J.TEM.2009.04.003

[18]

Horton WA, Degnin CR. FGFs in endochondral skeletal development. Trends Endocrinol Metab. 2009;20(7):341−348. DOI: 10.1016/J.TEM.2009.04.003

[19]

Thomson RE, Kind PC, Graham NA, et al. Fgf receptor 3 activation promotes selective growth and expansion of occipitotemporal cortex. Neural Dev. 2009;4(4):4. DOI: 10.1186/1749-8104-4-4

[20]

Thomson R.E., Kind P.C., Graham N.A., et al. Fgf receptor 3 activation promotes selective growth and expansion of occipitotemporal cortex // Neural. Dev. 2009. Vol. 4. No. 4. DOI: 10.1186/1749-8104-4-4

[21]

Thomson RE, Kind PC, Graham NA, et al. Fgf receptor 3 activation promotes selective growth and expansion of occipitotemporal cortex. Neural Dev. 2009;4(4):4. DOI: 10.1186/1749-8104-4-4

[22]

Maroteaux P, Lamy M. Pseudo-achondroplastic forms of spondylo-epiphyseal dysplasias. Presse Med. 1959;67(10):383−386.

[23]

Maroteaux P., Lamy M. Pseudo-achondroplastic forms of spondylo-epiphyseal dysplasias // Presse Med. 1959. Vol. 67. No. 10. P. 383−386.

[24]

Maroteaux P, Lamy M. Pseudo-achondroplastic forms of spondylo-epiphyseal dysplasias. Presse Med. 1959;67(10):383−386.

[25]

Briggs MD, Hoffman SMG, King LM, et al. Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat Genet. 1995;10(3):330−336. DOI: 10.1038/ng0795-330

[26]

Briggs M.D., Hoffman S.M.G., King L.M., et al. Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene // Nat. Genet. 1995. Vol. 10. No. 3. P. 330−336. DOI: 10.1038/ng0795-330

[27]

Briggs MD, Hoffman SMG, King LM, et al. Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat Genet. 1995;10(3):330−336. DOI: 10.1038/ng0795-330

[28]

Newton G, Weremowicz S, Morton CC, et al. Characterization of human and mouse cartilage oligomeric matrix protein. Genomics. 1994;24(3):435−439. DOI: 10.1006/GENO.1994.1649

[29]

Newton G., Weremowicz S., Morton C.C., et al. Characterization of human and mouse cartilage oligomeric matrix protein // Genomics. 1994. Vol. 24. No. 3. P. 435−439. DOI: 10.1006/GENO.1994.1649

[30]

Newton G, Weremowicz S, Morton CC, et al. Characterization of human and mouse cartilage oligomeric matrix protein. Genomics. 1994;24(3):435−439. DOI: 10.1006/GENO.1994.1649

[31]

Hedbom E, Antonsson P, Hjerpe A, et al. Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem. 1992;267(9):6132−6136. DOI: 10.1016/S0021-9258(18)42671-3

[32]

Hedbom E., Antonsson P., Hjerpe A., et al. Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage // J. Biol. Chem. 1992. Vol. 267. No. 9. P. 6132−6136. DOI: 10.1016/S0021-9258(18)42671-3

[33]

Hedbom E, Antonsson P, Hjerpe A, et al. Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem. 1992;267(9):6132−6136. DOI: 10.1016/S0021-9258(18)42671-3

[34]

Piróg KA, Jaka O, Katakura Y, et al. A mouse model offers novel insights into the myopathy and tendinopathy often associated with pseudoachondroplasia and multiple epiphyseal dysplasia. Hum Mol Genet. 2010;19(1):52−64. DOI: 10.1093/HMG/DDP466

[35]

Piróg K.A., Jaka O., Katakura Y., et al. A mouse model offers novel insights into the myopathy and tendinopathy often associated with pseudoachondroplasia and multiple epiphyseal dysplasia // Hum. Mol. Genet. 2010. Vol. 19. No. 1. P. 52−64. DOI: 10.1093/HMG/DDP466

[36]

Piróg KA, Jaka O, Katakura Y, et al. A mouse model offers novel insights into the myopathy and tendinopathy often associated with pseudoachondroplasia and multiple epiphyseal dysplasia. Hum Mol Genet. 2010;19(1):52−64. DOI: 10.1093/HMG/DDP466

[37]

Briggs MD, Chapman KL. Pseudoachondroplasia and multiple epiphyseal dysplasia: mutation review, molecular interactions, and genotype to phenotype correlations. Hum Mutat. 2002;19:465−478. DOI: 10.1002/humu.10066

[38]

Briggs M.D., Chapman K.L. Pseudoachondroplasia and multiple epiphyseal dysplasia: mutation review, molecular interactions, and genotype to phenotype correlations // Hum. Mutat. 2002. Vol. 19. P. 465−478. DOI: 10.1002/humu.10066

[39]

Briggs MD, Chapman KL. Pseudoachondroplasia and multiple epiphyseal dysplasia: mutation review, molecular interactions, and genotype to phenotype correlations. Hum Mutat. 2002;19:465−478. DOI: 10.1002/humu.10066

[40]

Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405−423. DOI: 10.1038/gim.2015.30

[41]

Richards S., Aziz N., Bale S., et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology // Genet. Med. 2015. Vol. 17. No. 5. P. 405−423. DOI: 10.1038/gim.2015.30

[42]

Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405−423. DOI: 10.1038/gim.2015.30

[43]

Ikegawa S, Fukushima Y, Isomura M, et al. Mutations of the fibroblast growth factor receptor-3 gene in one familial and six sporadic cases of achondroplasia in Japanese patients. Hum Genet. 1995;96(3):309−311. DOI: 10.1007/BF00210413

[44]

Ikegawa S., Fukushima Y., Isomura M., et al. Mutations of the fibroblast growth factor receptor-3 gene in one familial and six sporadic cases of achondroplasia in Japanese patients // Hum. Genet. 1995. Vol. 96. No. 3. P. 309−311. DOI: 10.1007/BF00210413

[45]

Ikegawa S, Fukushima Y, Isomura M, et al. Mutations of the fibroblast growth factor receptor-3 gene in one familial and six sporadic cases of achondroplasia in Japanese patients. Hum Genet. 1995;96(3):309−311. DOI: 10.1007/BF00210413

[46]

Addor MC, Gudinchet F, Truttmann A, et al. An uncommon G375C substitution in a newborn with achondroplasia. Genet Couns. 2000;11(2):169−174.

[47]

Addor M.C., Gudinchet F., Truttmann A., et al. An uncommon G375C substitution in a newborn with achondroplasia // Genet. Couns. 2000. Vol. 11. No. 2. P. 169−174.

[48]

Addor MC, Gudinchet F, Truttmann A, et al. An uncommon G375C substitution in a newborn with achondroplasia. Genet Couns. 2000;11(2):169−174.

[49]

Barton C, Sweeney E, Roberts D, et al. Fibroblast growth receptor-3 (FGFR3) G375C mutation in a case of achondroplasia and thanatophoric dysplasia phenotypic overlap. Clin Dysmorphol. 2010;19(3):146−149. DOI: 10.1097/MCD.0B013E328337586B

[50]

Barton C., Sweeney E., Roberts D., et al. Fibroblast growth receptor-3 (FGFR3) G375C mutation in a case of achondroplasia and thanatophoric dysplasia phenotypic overlap // Clin. Dysmorphol. 2010. Vol. 19. No. 3. P. 146−149. DOI: 10.1097/MCD.0B013E328337586B

[51]

Barton C, Sweeney E, Roberts D, et al. Fibroblast growth receptor-3 (FGFR3) G375C mutation in a case of achondroplasia and thanatophoric dysplasia phenotypic overlap. Clin Dysmorphol. 2010;19(3):146−149. DOI: 10.1097/MCD.0B013E328337586B

[52]

Spranger JW, Brill PW, Hall C, et al. Bone dysplasiasan atlas of genetic disorders of skeletal development: an atlas of genetic disorders of skeletal development. USA: Oxford University Press; 2018. DOI: 10.1093/med/9780190626655.001.0001

[53]

Spranger J.W., Brill P.W., Hall C., et al. Bone dysplasiasan atlas of genetic disorders of skeletal development: an atlas of genetic disorders of skeletal development. USA: Oxford University Press, 2018. DOI: 10.1093/med/9780190626655.001.0001

[54]

Spranger JW, Brill PW, Hall C, et al. Bone dysplasiasan atlas of genetic disorders of skeletal development: an atlas of genetic disorders of skeletal development. USA: Oxford University Press; 2018. DOI: 10.1093/med/9780190626655.001.0001

[55]

Briggs MD, Brock J, Ramsden SC, et al. Genotype to phenotype correlations in cartilage oligomeric matrix protein associated chondrodysplasias. Eur J Hum Genet. 2014;22:1278−1282. DOI: 10.1038/ejhg.2014.30

[56]

Briggs M.D., Brock J., Ramsden S.C., et al. Genotype to phenotype correlations in cartilage oligomeric matrix protein associated chondrodysplasias // Eur. J. Hum. Genet. 2014. Vol. 22. P. 1278−1282. DOI: 10.1038/ejhg.2014.30

[57]

Briggs MD, Brock J, Ramsden SC, et al. Genotype to phenotype correlations in cartilage oligomeric matrix protein associated chondrodysplasias. Eur J Hum Genet. 2014;22:1278−1282. DOI: 10.1038/ejhg.2014.30

[58]

Briggs MD, Wright MJ. Pseudoachondroplasia. GeneReviews. 2018.

[59]

Briggs M.D., Wright M.J. Pseudoachondroplasia // GeneReviews. 1993.

[60]

Briggs MD, Wright MJ. Pseudoachondroplasia. GeneReviews. 2018.

[61]

Klag KA, Horton WA. Advances in treatment of achondroplasia and osteoarthritis. Hum Mol Genet. 2016;25(R1):R2−R8. DOI: 10.1093/HMG/DDV419

[62]

Klag K.A., Horton W.A. Advances in treatment of achondroplasia and osteoarthritis // Hum. Mol. Genet. 2016. Vol. 25. No. R1. P. R2−R8. DOI: 10.1093/HMG/DDV419

[63]

Klag KA, Horton WA. Advances in treatment of achondroplasia and osteoarthritis. Hum Mol Genet. 2016;25(R1):R2−R8. DOI: 10.1093/HMG/DDV419

[64]

Ornitz DM, Legeai-Mallet L. Achondroplasia: development, pathogenesis, and therapy. Dev Dyn. 2017;246(4):291−309. DOI: 10.1002/DVDY.24479

[65]

Ornitz D.M., Legeai-Mallet L. Achondroplasia: development, pathogenesis, and therapy // Dev. Dyn. 2017. Vol. 246. No. 4. P. 291−309. DOI: 10.1002/DVDY.24479

[66]

Ornitz DM, Legeai-Mallet L. Achondroplasia: development, pathogenesis, and therapy. Dev Dyn. 2017;246(4):291−309. DOI: 10.1002/DVDY.24479

[67]

Duggan S. Vosoritide: first approval. Drugs. 2021;81(17):2057−2062. DOI: 10.1007/S40265-021-01623-W

[68]

Duggan S. Vosoritide: First Approval // Drugs. 2021. Vol. 81. No. 17. P. 2057−2062. DOI: 10.1007/S40265-021-01623-W

[69]

Duggan S. Vosoritide: first approval. Drugs. 2021;81(17):2057−2062. DOI: 10.1007/S40265-021-01623-W

[70]

Briggs MD, Brock J, Ramsden SC, et al. Genotype to phenotype correlations in cartilage oligomeric matrix protein associated chondrodysplasias. Eur J Hum Genet. 2014;22:1278−1282. DOI: 10.1038/ejhg.2014.30

[71]

Briggs M.D., Brock J., Ramsden S.C., et al. Genotype to phenotype correlations in cartilage oligomeric matrix protein associated chondrodysplasias // Eur. J. Hum. Genet. 2014. Vol. 22. P. 1278−1282. DOI: 10.1038/ejhg.2014.30

[72]

Briggs MD, Brock J, Ramsden SC, et al. Genotype to phenotype correlations in cartilage oligomeric matrix protein associated chondrodysplasias. Eur J Hum Genet. 2014;22:1278−1282. DOI: 10.1038/ejhg.2014.30

[73]

Chen T-LL, Posey KL, Hecht JT, et al. COMP mutations: domain-dependent relationship between abnormal chondrocyte trafficking and clinical PSACH and MED phenotypes. J Cell Biochem. 2008;103:778−787. DOI: 10.1002/jcb.21445

[74]

Chen T.-L.L., Posey K.L., Hecht J.T., et al. COMP mutations: domain-dependent relationship between abnormal chondrocyte trafficking and clinical PSACH and MED phenotypes // J. Cell Biochem. 2008. Vol. 103. P. 778−787. DOI: 10.1002/jcb.21445

[75]

Chen T-LL, Posey KL, Hecht JT, et al. COMP mutations: domain-dependent relationship between abnormal chondrocyte trafficking and clinical PSACH and MED phenotypes. J Cell Biochem. 2008;103:778−787. DOI: 10.1002/jcb.21445

[76]

Suleman F, Gualeni B, Gregson HJ, et al. A novel form of chondrocyte stress is triggered by a COMP mutation causing pseudoachondroplasia. Hum Mutat. 2012;33(1):218−231. DOI: 10.1002/humu.21631

[77]

Suleman F., Gualeni B., Gregson H.J., et al. A novel form of chondrocyte stress is triggered by a COMP mutation causing pseudoachondroplasia // Hum. Mutat. 2012. Vol. 33. No. 1. P. 218−231. DOI: 10.1002/humu.21631

[78]

Suleman F, Gualeni B, Gregson HJ, et al. A novel form of chondrocyte stress is triggered by a COMP mutation causing pseudoachondroplasia. Hum Mutat. 2012;33(1):218−231. DOI: 10.1002/humu.21631

[79]

Posey KL, Coustry F, Hecht JT. Cartilage oligomeric matrix protein: COMPopathies and beyond. Matrix Biol. 2018;71−72:161. DOI: 10.1016/J.MATBIO.2018.02.023

[80]

Posey K.L., Coustry F., Hecht J.T. Cartilage oligomeric matrix protein: COMPopathies and beyond // Matrix Biol. 2018. Vol. 71−72. P. 161−173. DOI: 10.1016/J.MATBIO.2018.02.023

[81]

Posey KL, Coustry F, Hecht JT. Cartilage oligomeric matrix protein: COMPopathies and beyond. Matrix Biol. 2018;71−72:161. DOI: 10.1016/J.MATBIO.2018.02.023

[82]

McKusick VA. McKusick’s heritable disorders of connective tissue. Ed. by P. Beighton. USA: Mosby; 1993.

[83]

McKusick V.A. McKusick’s heritable disorders of connective tissue / Ed. by P. Beighton. USA: Mosby, 1993.

[84]

McKusick VA. McKusick’s heritable disorders of connective tissue. Ed. by P. Beighton. USA: Mosby; 1993.

[85]

Mabuchi A, Manabe N, Haga N, et al. Novel types of COMP mutations and genotype-phenotype association in pseudoachondroplasia and multiple epiphyseal dysplasia. Hum Genet. 2003;112(1):84−90. DOI: 10.1007/S00439-002-0845-9

[86]

Mabuchi A., Manabe N., Haga N., et al. Novel types of COMP mutations and genotype-phenotype association in pseudoachondroplasia and multiple epiphyseal dysplasia // Hum. Genet. 2003. Vol. 112. No. 1. P. 84−90. DOI: 10.1007/S00439-002-0845-9

[87]

Mabuchi A, Manabe N, Haga N, et al. Novel types of COMP mutations and genotype-phenotype association in pseudoachondroplasia and multiple epiphyseal dysplasia. Hum Genet. 2003;112(1):84−90. DOI: 10.1007/S00439-002-0845-9

[88]

Nakayama H, Endo Y, Aota S, et al. Novel mutations of the cartilage oligomeric matrix protein (COMP) gene in two Japanese patients with pseudoachondroplasia. Oncol Rep. 2003;10(4):871−873. DOI: 10.3892/OR.10.4.871

[89]

Nakayama H., Endo Y., Aota S., et al. Novel mutations of the cartilage oligomeric matrix protein (COMP) gene in two Japanese patients with pseudoachondroplasia // Oncol. Rep. 2003. Vol. 10. No. 4. P. 871−873. DOI: 10.3892/OR.10.4.871

[90]

Nakayama H, Endo Y, Aota S, et al. Novel mutations of the cartilage oligomeric matrix protein (COMP) gene in two Japanese patients with pseudoachondroplasia. Oncol Rep. 2003;10(4):871−873. DOI: 10.3892/OR.10.4.871

Funding

Государственное бюджетное финансированиеState budget funding

RIGHTS & PERMISSIONS

Markova T.V., Kenis V.M., Melchenko E.V., Reshchikov D.A., Alieva A.E., Osipova D.V., Bessonova L.A., Nagornova T.S., Vasserman N.N., Ogorodova N.Y., Shchagina O.A., Dadali E.L.

AI Summary AI Mindmap
PDF (665KB)

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/