Features of the reparative osteogenesis of the distraction of the tibial regenerate and osteotropic growth factors in patients with achondroplasia at the age of 9–12 years

Svetlana N. Lyneva , Tatyana I. Menschchikova , Anna M. Aranovich

Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2022, Vol. 10 ›› Issue (3) : 223 -234.

PDF (869KB)
Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2022, Vol. 10 ›› Issue (3) : 223 -234. DOI: 10.17816/PTORS108618
Clinical studies
research-article

Features of the reparative osteogenesis of the distraction of the tibial regenerate and osteotropic growth factors in patients with achondroplasia at the age of 9–12 years

Author information +
History +
PDF (869KB)

Abstract

BACKGROUND: Despite studies on various issues of distraction osteosynthesis, many morphological aspects of this problem are still insufficiently studied and remained debatable.

AIM: To determine the features of the reparative activity of the regenerate and analyze the content of some osteotropic growth factors in children with achondroplasia.

MATERIALS AND METHODS: Growth factors were determined in serum and blood plasma using equipment from Thermo Fisher (USA). Factor concentrations were determined using ELISA kits: PDGF-AA (R&D Systems, USA), PDGF-BB (R&D Systems, USA), IGF-1 (Immunodiagnostic systems, USA), IGF-2 (Mediagnost, Germany), TGF-β1 (eBioscience, USA), and TGF-β2 (eBioscience, USA). The structural state of the tibial regenerate was determined using by ultrasonography (HITACHI, Japan). Patients with achondroplasia aged 9–12 years (n = 32) were examined at the beginning of distraction (10–20 days), in the middle of distraction (21–40 days), and at the end of distraction (41–63 days).

RESULTS: The ultrasound method showed the dynamic formation of the structural state of the distraction regenerate at the studied stages of distraction. At the same stages of distraction, the concentration of osteotropic growth factors was assessed.

CONCLUSIONS: The serum content of osteotropic growth factors in the blood of children with achondroplasia differs from age-normative values. Growth factors that play a key role in osteogenesis, IGF-1, BMP-4, TGF-β1, and TGF-β2 were reduced, whereas the expressions of IGF-2 and BMP-6 were compensatory increased. At the end of the distraction period, the values of all studied growth factors exceeded the initial values, regardless of their preoperative values and their dynamics at the stages of distraction. The assessment of the dynamics of the concentration of osteotropic growth factors in the blood of patients with achondroplasia during the distraction period and natural growth period indicate the presence of a commonality of processes during the distraction period and prenatal growth of the tibia. Our comprehensive ultrasound study of the structural state of the distraction regenerate of the tibia and biochemical studies of growth factors in the blood of patients with achondroplasia at the age of 9–12 years made it possible to identify the features of reparative osteogenesis of the distraction regenerate of the tibia and the physiological effect of osteotropic growth factors from the viewpoint of the process of reparative regeneration.

Keywords

achondroplasia / distraction / ultrasound / osteotropic growth factors

Cite this article

Download citation ▾
Svetlana N. Lyneva, Tatyana I. Menschchikova, Anna M. Aranovich. Features of the reparative osteogenesis of the distraction of the tibial regenerate and osteotropic growth factors in patients with achondroplasia at the age of 9–12 years. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery, 2022, 10(3): 223-234 DOI:10.17816/PTORS108618

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wrobel W, Pach E, Ben-Skowronek I. Advantages and disadvantages of different treatment methods in achondroplasia. Int J Mol Sci. 2021;22(11):5573. DOI: 10.3390/ijms22115573

[2]

Wrobel W., Pach E., Ben-Skowronek I. Advantages and disadvantages of different treatment methods in achondroplasia // Int. J. Mol. Sci. 2021. Vol. 22. No. 11. P. 5573. DOI: 10.3390/ijms22115573

[3]

Legeai-Mallet L, Savarirayan R. Novel therapeutic approaches for the treatment of achondroplasia. J Bone. 2020;141:115579. DOI: 10.1016/j.bone.2020.115579

[4]

Legeai-Mallet L., Savarirayan R. Novel therapeutic approaches for the treatment of Achondroplasia // J. Bone. 2020. Vol. 141. P. 115579. DOI: 10.1016/j.bone.2020.115579

[5]

Maes C. Signaling pathways effecting crosstalk between cartilage and adjacent tissues: Seminars in cell and developmental biology: The biology and pathology of cartilage. Semin Cell Dev Biol. 2017;62:16−33. DOI: 10.1016/j.semcdb.2016.05.007

[6]

Maes C. Signaling pathways effecting crosstalk between cartilage and adjacent tissues: Seminars in cell and developmental biology: The biology and pathology of cartilage // Semin. Cell. Dev. Biol. 2017. Vol. 62. P. 16−33. DOI: 10.1016/j.semcdb.2016.05.00

[7]

Lui JC, Nilsson O, Baron J. Recent research on the growth plate: Recent insights into the regulation of the growth plate. J Mol Endocrinol. 2014;53(1):1−9. DOI: 10.1530/JME-14-0022

[8]

Lui J.C., Nilsson O., Baron J. Recent research on the growth plate: Recent insights into the regulation of the growth plate // J. Mol. Endocrinol. 2014. Vol. 53. No. 1. P. 1−9. DOI: 10.1530/JME-14-0022

[9]

Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development. 2015;142(5):817−831. DOI: 10.1242/dev.105536

[10]

Kozhemyakina E., Lassar A.B., Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation // Development. 2015. Vol. 142. No. 5. P. 817−831. DOI: 10.1242/dev.105536

[11]

Naski MC, Colvin JS, Coffin JD, Ornitz DM. Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development. 1998;125(24):4977−4988. DOI: 10.1242/dev.125.24.4977

[12]

Naski M.C., Colvin J.S., Coffin J.D., Ornitz D.M. Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3 // Development. 1998. Vol. 125. No. 24. P. 4977−4988. DOI: 10.1242/dev.125.24.4977

[13]

Horton WA, Hall JG, Hecht JT. Achondroplasia. Lancet. 2007;370(9582):162−172. DOI: 10.1016/S0140-6736(07)61090-3

[14]

Horton W.A., Hall J.G., Hecht J.T. Achondroplasia // Lancet. 2007. Vol. 370. No. 9582. P. 162−172. DOI: 10.1016/S0140-6736(07)61090-3

[15]

Pauli RM. Achondroplasia: A comprehensive clinical review. Orphanet J Rare Dis. 2019;14(1):1. DOI: 10.1186/s13023-018-0972-6

[16]

Pauli R.M. Achondroplasia: A comprehensive clinical review // Orphanet. J. Rare Dis. 2019. Vol. 14. No. 1. P. 1. DOI:10.1186/s13023-018-0972-6

[17]

Menshchikova TI, Aranovich AM. Udlineniye goleney u bol’nykh akhondroplaziyey 6-9 let kak pervyy etap korrektsii rosta. Geniy ortopedii. 2021;27(3):366−371. (In Russ.)

[18]

Менщикова Т.И., Аранович А.М. Удлинение голеней у больных ахондроплазией 6-9 лет как первый этап коррекции роста // Гений ортопедии. 2021. Т. 27. № 3. С. 366−371.

[19]

Vykhovanets YeP, Luneva SN, Nakoskina NV. Kontsentratsiya nekotorykh osteotropnykh faktorov rosta i markerov osteogeneza v krovi somaticheski zdorovykh detey i vzroslykh. Fiziologiya cheloveka. 2018;44(6):1−7. (In Russ.)

[20]

Выхованец Е.П., Лунева С.Н., Накоскина Н.В. Концентрация некоторых остеотропных факторов роста и маркеров остеогенеза в крови соматически здоровых детей и взрослых // Физиология человека. 2018. Т. 44. № 6. С. 1−7.

[21]

Glants S. Medical and Biological Statistics. Moscow: Praktika; 1998. (In Russ.)

[22]

Гланц С. Медико-биологическая статистика. Москва: Практика, 1998.

[23]

Wang Y, Zhang H, Cao M, et al. Analysis of the value and correlation of IGF-1 with GH and IGFBP-3 in the diagnosis of dwarfism. Exp Ther Med. 2019;17(5):3689−3693. DOI: 10.3892/etm.2019.7393

[24]

Wang Y., Zhang H., Cao M. et al. Analysis of the value and correlation of IGF-1 with GH and IGFBP-3 in the diagnosis of dwarfism // Exper. Ther. Med. 2019. Vol. 17. No. 5. P. 3689−3693. DOI: 10.3892/etm.2019.7393

[25]

Yamanaka Y, Ueda K, Seino Y, Tanaka H. Molecular basis for the treatment of achondroplasia. Horm Res. 2003;60(Suppl 3):60−64. DOI: 10.1159/000074503

[26]

Yamanaka Y., Ueda K., Seino Y., Tanaka H. Molecular basis for the treatment of achondroplasia // Horm. Res. 2003. Vol. 60. Suppl. 3. P. 60−64. DOI: 10.1159/000074503

[27]

Hutchison MR, Bassett MH, Perrin C. White insulin-like growth factor-I and fibroblast growth factor, but not growth hormone, affect growth plate chondrocyte proliferation. Endocrinology. 2007;148(7):3122−3130. DOI: 10.1210/en.2006-1264

[28]

Hutchison M.R., Bassett M.H., Perrin C. White insulin-like growth factor-I and fibroblast growth factor, but not growth hormone, affect growth plate chondrocyte proliferation // Endocrinology. 2007. Vol. 148. No. 7. P. 3122−3130. DOI: 10.1210/en.2006-1264

[29]

Yorifuji T, Higuchi S, Kawakita R. Growth hormone treatment for achondroplasia. Pediatr Endocrinol Rev. 2018;(Suppl 1):123−128. DOI: 10.17458/per.vol16.2018.yhk.ghachondroplasia

[30]

Yorifuji T., Higuchi S., Kawakita R. Growth hormone treatment for achondroplasia // Pediatr. Endocrinol. Rev. 2018. Vol. 16. Suppl. 1. P. 123−128. DOI: 10.17458/per.vol16.2018.yhk.ghachondroplasia

[31]

Koike M, Yamanaka Y, Inoue M, et al. Insulin-like growth factor-1 rescues the mutated FGF receptor 3 (G380R) expressing ATDC5 cells from apoptosis through phosphatidylinositol 3-kinase and MAPK. J Bone Miner Res. 2003;18(11):2043−2051. DOI: 10.1359/jbmr.2003.18.11.2043

[32]

Koike M., Yamanaka Y., Inoue M. et al. Insulin-like growth factor-1 rescues the mutated FGF receptor 3 (G380R) expressing ATDC5 cells from apoptosis through phosphatidylinositol 3-kinase and MAPK // J. Bone Miner. Res. 2003. Vol. 18. No. 11. P. 2043−2051. DOI: 10.1359/jbmr.2003.18.11.2043

[33]

Lavrishcheva GI, Onopriyenko GA. Morfologicheskiye i klinicheskiye aspekty reparativnoy regeneratsii opornykh organov i tkaney. Moscow: Meditsina; 1996. (In Russ.)

[34]

Лаврищева Г.И., Оноприенко Г.А. Морфологические и клинические аспекты репаративной регенерации опорных органов и тканей. Москва: Медицина, 1996.

[35]

Livingstone C. IGF2 and cancer. Endocr Relat Cancer. 2013;20(6):321−339. DOI: 10.1530/ERC-13-0231

[36]

Livingstone C. IGF2 and cancer // Endocr. Relat. Cancer. 2013. Vol. 20. No. 6. P. 321−339. DOI: 10.1530/ERC-13-0231

[37]

Pavlova LA, Pavlova TV, Nesterov AB. Sovremennoe predstavlenie ob osteoinduktivnykh mekhanizmakh regeneratsii kostnoi tkani. Obzor sostoyaniya problemy. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Meditsina. Farmatsiya. 2010;(10):5–11.

[38]

Павлова Л.А., Павлова Т.В., Нестеров A.B. Современное представление об остеоиндуктивных механизмах регенерации костной ткани. Обзор состояния проблемы // Научные ведомости Белгородского государственного университета. Серия: Медицина. Фармация. 2010. № 10(81). С. 5–11.

[39]

Sakou T, Onishi T, Yamamoto T, et al. Localization of Smads, the TGF-beta family intracellular signaling components during endochondral ossification. J Bone Miner Res. 1999;14(7):1145−1152. DOI: 10.1359/jbmr.1999.14.7.1145

[40]

Sakou T., Onishi T., Yamamoto T. et al. Localization of Smads, the TGF-beta family intracellular signaling components during endochondral ossification // J. Bone Miner. Res. 1999. Vol. 14. No. 7. P. 1145−1152. DOI: 10.1359/jbmr.1999.14.7.1145

[41]

Li TF, O’Keefe RJ, Chen D. TGF-beta signaling in chondrocytes. Front Biosci. 2005;10:681−688. DOI: 10.2741/1563

[42]

Li T.F., O’Keefe R.J., Chen D. TGF-beta signaling in chondrocytes // Front. Biosci. 2005. Vol. 10. P. 681−688. DOI: 10.2741/1563

[43]

Sanford LP, Ormsby I, Gittenberger-de Groot AC, et al. TGF beta2 knockout mice have multiple developmental defects that are nonoverlapping with other TGFbeta knockout phenotypes. Development. 1997;124:2659−2670. DOI: 10.1242/dev.124.13.2659

[44]

Sanford L.P., Ormsby I., Gittenberger-de Groot A.C. et al. TGF beta2 knockout mice have multiple developmental defects that are nonoverlapping with other TGFbeta knockout phenotypes // Development. 1997. Vol. 124. P. 2659−2670. DOI: 10.1242/dev.124.13.2659

[45]

Kulkarni AB, Huh CG, Becker D, et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA. 1993;90(2):770−774. DOI: 10.1073/pnas.90.2.770

[46]

Kulkarni A.B., Huh C.G., Becker D. et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death // Proc. Natl. Acad. Sci. USA. 1993. Vol. 90. No. 2. P. 770−774. DOI: 10.1073/pnas.90.2.770

[47]

Kaartinen V, Voncken JW, Shuler C, et al. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet. 1995;11(4):415−421. DOI: 10.1038/ng1295-415

[48]

Kaartinen V., Voncken J.W., Shuler C. et al. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction // Nat. Genet. 1995. Vol. 11. No. 4. P. 415−421. DOI: 10.1038/ng1295-415

[49]

Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. 2000;342(18):1350−1358. DOI: 10.1056/NEJM200005043421807

[50]

Blobe G.C., Schiemann W.P., Lodish H.F. Role of transforming growth factor beta in human disease // N. Engl J. Med. 2000. Vol. 342. No. 18. P. 1350−1358. DOI: 10.1056/NEJM200005043421807

[51]

Li YP, Chen W, Liang Y, Li E, Stashenko P. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet. 1999;23(4):447−451. DOI: 10.1038/70563

[52]

Li Y.P., Chen W., Liang Y. et al. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification // Nat. Genet. 1999. Vol. 23. No. 4. P. 447−451. DOI: 10.1038/70563

[53]

Chen W, Yang S, Abe Y, et al. Novel pycnodysostosis mouse model uncovers cathepsin K function as a potential regulator of osteoclast apoptosis and senescence. Hum Mol Genet. 2007;16(4):410−423. DOI: 10.1093/hmg/ddl474

[54]

Chen W., Yang S., Abe Y. et al. Novel pycnodysostosis mouse model uncovers cathepsin K function as a potential regulator of osteoclast apoptosis and senescence // Hum. Mol. Genet. 2007. Vol. 16. No. 4. P. 410−423. DOI: 10.1093/hmg/ddl474

[55]

Abula K, Muneta T, Miyatake K, et al. Elimination of BMP7 from the developing limb mesenchyme leads to articular cartilage degeneration and synovial inflammation with increased age. FEBS Lett. 2015;589(11):1240−1248. DOI: 10.1016/j.febslet.2015.04.004

[56]

Abula K., Muneta T., Miyatake K. et al. Elimination of BMP7 from the developing limb mesenchyme leads to articular cartilage degeneration and synovial inflammation with increased age // FEBS Lett. 2015. Vol. 589. No. 11. P. 1240−1248. DOI: 10.1016/j.febslet.2015.04.004

[57]

Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4:16009. DOI: 10.1038/boneres.2016.9

[58]

Wu M., Chen G., Li Y.P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease // Bone. Res. 2016. Vol. 4. P. 16009. DOI: 10.1038/boneres.2016.9

[59]

Spector JA, Luchs JS, Mehrara BJ, et al. Expression of bone morphogenetic proteins during membranous bone healing. Plast Reconstr Surg. 2001;107(1):124−134. DOI: 10.1097/00006534-200101000-00018

[60]

Spector J.A., Luchs J.S., Mehrara B.J. et al. Expression of bone morphogenetic proteins during membranous bone healing // Plast. Reconstr. Surg. 2001. Vol. 107. No. 1. P. 124−134. DOI: 10.1097/00006534-200101000-00018

[61]

Okamoto M, Murai J, Yoshikawa H, Tsumaki N. Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development. J Bone Miner Res. 2006;21(7):1022−1033. DOI: 10.1359/jbmr.060411

[62]

Okamoto M., Murai J., Yoshikawa H., Tsumaki N. Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development // J. Bone Miner. Res. 2006. Vol. 21. No. 7. P. 1022−1033. DOI: 10.1359/jbmr.060411

[63]

Wutzl A, Brozek W, Lernbass I, et al. Bone morphogenetic proteins 5 and 6 stimulate osteoclast generation. J Biomed Mater Res A. 2006;77(1):75−83. DOI: 10.1002/jbm.a.30615

[64]

Wutzl A., Brozek W., Lernbass I. et al. Bone morphogenetic proteins 5 and 6 stimulate osteoclast generation // J. Biomed. Mater. Res. A. 2006. Vol. 77. No. 1. P. 75−83. DOI: 10.1002/jbm.a.30615

[65]

Simic P, Culej JB, Orlic I, et al. Systemically administered bone morphogenetic protein-6 restores bone in aged ovariectomized rats by increasing bone formation and suppressing bone resorption. J Biol Chem. 2006;281(35):25509−25521. DOI: 10.1074/jbc.M513276200

[66]

Simic P., Culej J.B., Orlic I. et al. Systemically administered bone morphogenetic protein-6 restores bone in aged ovariectomized rats by increasing bone formation and suppressing bone resorption // J. Biol. Chem. 2006. Vol. 281. No. 35. P. 25509−25521. DOI: 10.1074/jbc.M513276200

[67]

Popkov DA. Pokazateli metabolizma kollagena pri operativnom lechenii vrozhdennykh ukorocheniy nizhnikh konechnostey. Geniy ortopedii. 2004;(1):55−58. (In Russ.)

[68]

Попков Д.А. Показатели метаболизма коллагена при оперативном лечении врожденных укорочений нижних конечностей // Гений ортопедии. 2004. № 1. С. 55−58.

[69]

Kovin’ka MA, Aranovich AM, Stogov MV. Biokhimicheskaya otsenka sostoyaniya patsiyentov s akhondroplaziyey pri udlinenii konechnostey. Geniy ortopedii. 2011;(1):125−129. (In Russ.)

[70]

Ковинька М.А., Аранович А.М., Стогов М.В. Биохимическая оценка состояния пациентов с ахондроплазией при удлинении конечностей // Гений ортопедии. 2011. № 1. С. 125−129.

[71]

Menshchikova TI, Aranovich AM, Novikov KI, Dindiberya YeV. Ul’trasonogrofiya kostnogo regenerata pri normal’noy osteogennoy aktivnosti u patsiyentov s kosmeticheskoy korrektsii rosta. Geniy ortopedii. 2003;(4):27−30. (In Russ.)

[72]

Менщикова Т.И., Аранович А.М., Новиков К.И., Диндиберя Е.В. Ультрасоногрофия костного регенерата при нормальной остеогенной активности у пациентов с косметической коррекции роста // Гений ортопедии. 2003. № 4. С. 27−30.

RIGHTS & PERMISSIONS

Lyneva S.N., Menschchikova T.I., Aranovich A.M.

AI Summary AI Mindmap
PDF (869KB)

78

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/