Biocompatibility of an interspinous implant made of titanium alloys

Vladimir P. Orlov , Yuliya A. Nashchekina , Alexey V. Nashchekin , Olga N. Ozeryanskaya , Saidmirze D. Mirzametov , Dmitry V. Svistov

Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2022, Vol. 10 ›› Issue (4) : 407 -415.

PDF (743KB)
Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2022, Vol. 10 ›› Issue (4) : 407 -415. DOI: 10.17816/PTORS104011
Experimental and theoretical research
research-article

Biocompatibility of an interspinous implant made of titanium alloys

Author information +
History +
PDF (743KB)

Abstract

BACKGROUND: At present, metal implants are widely used in neuro-orthopedics, of which titanium alloys are of particular interest. A team of authors developed an original combined implant for posterior spinal fusion as an import substitution, which can be used from one-way access during minimally invasive operations on the lumbar spine. The implant was manufactured at the Endocarbon Enterprise in Penza. For better osseointegration, it is made of VT6 alloy and titanium nickelide. The middle part of the implant is laser-treated to create an uneven surface in the hope of better integration in the tissues of the body. This study was conducted to assess the cytotoxicity and biocompatibility of this implant for its further application in clinical practice.

AIM: To determine the cytotoxicity of an interspinous implant made of titanium alloys for its further introduction into spinal surgery.

MATERIALS AND METHODS: To determine the cytotoxicity of titanium samples of interspinous implants, a methyltetrazolium test was conducted to assess the viability of stromal cells in the presence of a nutrient medium after incubation with the test material. The biocompatibility of the material was analyzed using scanning electron microscopy of samples 1 and 7 days after cell culture.

RESULTS: The viability of cells cultured in the presence of a nutrient medium after incubation with samples of titanium VT6 was 105% and that of titanium nickelide was 98%, which were comparable to the viability of cells in a standard nutrient medium. With electron microscopy, after 1 day of cultivation, cells form a monolayer on a titanium surface, all cells were well spread out and formed intercellular contacts, and after 7 days of cultivation, the number of cells increased and they formed a dense monolayer.

CONCLUSIONS: The interspinous implant, which includes alloys of titanium VT6 and titanium nickelide, is biocompatible with cultured cells and can be introduced into spinal surgery.

Keywords

titanium interspinous implant / cytotoxicity / stromal cell viability / methyl tetrazolium test / implant biocompatibility / scanning electron microscopy

Cite this article

Download citation ▾
Vladimir P. Orlov, Yuliya A. Nashchekina, Alexey V. Nashchekin, Olga N. Ozeryanskaya, Saidmirze D. Mirzametov, Dmitry V. Svistov. Biocompatibility of an interspinous implant made of titanium alloys. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery, 2022, 10(4): 407-415 DOI:10.17816/PTORS104011

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiang S, Wang M, He J. A review of biomimetic scaffolds for bone regeneration: toward a cell-free strategy. Bioeng Transl Med. 2021;6(2). DOI: 10.1002/btm2.10206

[2]

Jiang S., Wang M., He J. A review of biomimetic scaffolds for bone regeneration: toward a cell-free strategy // Bioeng. Transl. Med. 2021. Vol. 6. No. 2: DOI: 10.1002/btm2.10206

[3]

Hamilton RF, Wu N, Xiang C, et al. Synthesis, characterization, and bioactivity of carboxylic acid-functionalized titanium dioxide nanobelts. Particle and fibre toxicology. 2014;11(1):1–15. DOI: 10.1186/s12989-014-0043-7

[4]

Hamilton R.F., Wu N., Xiang C., et al. Synthesis, characterization, and bioactivity of carboxylic acid-functionalized titanium dioxide nanobelts // Particle and fibre toxicology. 2014. Vol. 11. No. 1. P. 1–15. DOI: 10.1186/s12989-014-0043-7

[5]

Geetha M, Singh AK, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants — a review. Progress in materials science. 2009;54(3):397–425. DOI: 10.1016/j.pmatsci.2008.06.004

[6]

Geetha M., Singh A.K., Asokamani R., et al. Ti based biomaterials, the ultimate choice for orthopaedic implants — a review // Progress in materials science. 2009. Vol. 54. No. 3. P. 397–425. DOI: 10.1016/j.pmatsci.2008.06.004

[7]

Kunii T, Mori Y, Tanaka H, et al. Improved osseointegration of a TiNbSn alloy with a low Young’s modulus treated with anodic oxidation. Scientific Reports. 2019;9(1). DOI: 10.1038/s41598-019-50581-7

[8]

Kunii T., Mori Y., Tanaka H., et al. Improved osseointegration of a TiNbSn alloy with a low Young’s modulus treated with anodic oxidation // Scientific Reports. 2019. Vol. 9. No. 1. DOI: 10.1038/s41598-019-50581-7

[9]

Long M, Rack HJ. Titanium alloys in total joint replacement — a materials science perspective. Biomaterials. 1998;19(18):1621–1639. DOI: 10.1016/S0142-9612(97)00146-4

[10]

Long M., Rack H.J. Titanium alloys in total joint replacement — a materials science perspective // Biomaterials. 1998. Vol. 19. No. 18. P. 1621–1639. DOI: 10.1016/S0142-9612(97)00146-4

[11]

Longhofer LK, Chong A, Strong NM, et al. Specific material effects of wear-particle-induced inflammation and osteolysis at the bone–implant interface: a rat model. J Orthop Translat. 2017;8:5–11. DOI: 10.1016/j.jot.2016.06.026

[12]

Longhofer L.K., Chong A., Strong N.M., et al. Specific material effects of wear-particle-induced inflammation and osteolysis at the bone–implant interface: a rat model // J. Orthop. Translat. 2017. Vol. 8. P. 5–11. DOI: 10.1016/j.jot.2016.06.026

[13]

Lian F, Zhao C, Qu J, et al. Icariin attenuates titanium particle-induced inhibition of osteogenic differentiation and matrix mineralization via miR-21-5p. Cell Biol Int. 2018;42(8):931–939. DOI: 10.1002/cbin.10957

[14]

Lian F., Zhao C., Qu J., et al. Icariin attenuates titanium particle-induced inhibition of osteogenic differentiation and matrix mineralization via miR-21-5p // Cell Biol. Int. 2018. Vol. 42. No. 8. P. 931–939. DOI: 10.1002/cbin.10957

[15]

GOST 19807-91 of 01.07.1992. Wrought titanium and titanium alloys. Grades. (In Russ.). [cited 2022 Feb 24]. Available from: https://www.rst.gov.ru/portal/gost/home/standarts/cataloginter?portal:componentId=26cba537-adcd-44ed-9a44-72c63a7c7bc2&portal:isSecure=false&portal:portletMode=view&navigationalstate=JBPNS_rO0ABXc6AAZhY3Rpb24AAAABABBjb25jcmV0ZURvY3VtZW50AAZkb2NfaWQAAAABAAUzNDUxMgAHX19FT0ZfXw

[16]

ГОСТ 19807-91 от 01.07.1992. Титан и сплавы титановые деформируемые. Марки. [дата обращения 24.02.2022]. Доступно по ссылке: https://www.rst.gov.ru/portal/gost/home/standarts/cataloginter?portal:componentId=26cba537-adcd-44ed-9a44-72c63a7c7bc2&portal:isSecure=false&portal:portletMode=view&navigationalstate=JBPNS_rO0ABXc6AAZhY3Rpb24AAAABABBjb25jcmV0ZURvY3VtZW50AAZkb2NfaWQAAAABAAUzNDUxMgAHX19FT0ZfXw

[17]

Mirgazizov MZ, Galonsky VG, Olesova VN, et al. Materials and implants with shape memory in dentistry. Vol. 5. Ed. by V.E. Gunter. Medical materials and implants with shape memory: in 14 vol. Tomsk: MIC, 2011. (In Russ.)

[18]

Миргазизов М.З., Гюнтер В.Э., Галонский В.Г., и др. Материалы и имплантаты с памятью формы в стоматологии. Том 5 / под ред. В.Э. Гюнтера. Медицинские материалы и имплантаты с памятью формы: в 14 томах. Томск: МИЦ, 2011.

[19]

Patent RF na izobretenie No. 2765858 03.02.22. Byul. No. 4. Orlov VP, Mirzametov S, Ozeryanskaya ON, et al. Sposob kombinirovannogo zadnego spondilodeza i skoba dlja ego osushhestvlenija. Available from: https://fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&rn=5494&DocNumber=2765858&TypeFile=html. (In Russ.)

[20]

Патент РФ на изобретение № 2765858 / 03.02.22. Бюл. № 4. Орлов В.П., Мирзаметов С., Озерянская О.Н., и др. Способ комбинированного заднего спондилодеза и скоба для его осуществления. [дата обращения: 24.02.2022]. Доступ по ссылке: https://fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&rn=5494&DocNumber=2765858&TypeFile=html

[21]

Orlov VP, Ozyanskaya ON, Mirzametov SD, et al. Development of a method for stabilization the vertebral motor segment after lumbar microdiscectomy. Russian neurosurgical journal n.a. professor A.L. Polenov. 2021;13(1):35–42. (In Russ.)

[22]

Орлов В.П., Озерянская О.Н., Мирзаметов С.Д., и др. Разработка метода стабилизации позвоночно-двигательного сегмента после поясничной микродискэктомии // Российский нейрохирургический журнал имени профессора А.Л. Поленова. 2021. Т. 13. № 1. C. 35–42.

[23]

Zheng G, Guan B, Hu P, et al. Topographical cues of direct metal laser sintering titanium surfaces facilitate osteogenic differentiation of bone marrow mesenchymal stem cells through epigenetic regulation. Cell Prolif. 2018;51(4). DOI: 10.1111/cpr.12460

[24]

Zheng G., Guan B., Hu P., et al. Topographical cues of direct metal laser sintering titanium surfaces facilitate osteogenic differentiation of bone marrow mesenchymal stem cells through epigenetic regulation // Cell Prolif. 2018. Vol. 51. No. 4. DOI: 10.1111/cpr.12460

[25]

Еshkulov UE, Tarbokov VA, Ivanov SYu, et al. In vitro researches into the biocompatibility of titanium alloys with a modified surface. Journal Biomed. 2021;17(2):79–87. (In Russ.). DOI: 10.33647/2074-5982-17-2-79-87

[26]

Ешкулов У.Э., Тарбоков В.А., Иванов С.Ю., и др. In vitro исследование биосовместимости титановых сплавов с модифицированной поверхностью // Биомедицина. 2021. Т. 17. № 2. С. 79–87. DOI: 10.33647/2074-5982-17-2-79-87

[27]

Jayaraman M, Meyer U, Bühner M, et al. Influence of titanium surfaces on attachment of osteoblast-like cells in vitro. Biomaterials. 2004;25(4):625–631. DOI: 10.1016/S0142-9612(03)00571-4

[28]

Jayaraman M., Meyer U., Bühner M., et al. Influence of titanium surfaces on attachment of osteoblast-like cells in vitro // Biomaterials. 2004. Vol. 25. No. 4. P. 625–631. DOI: 10.1016/S0142-9612(03)00571-4

[29]

Santander S, Alcaine C, Lyahyai J, et al. In vitro osteoinduction of human mesenchymal stem cells in biomimetic surface modified titanium alloy implants. Dent Mater J. 2012;31(5):843–850. DOI: 10.4012/dmj.2012-015

[30]

Santander S., Alcaine C., Lyahyai J., et al. In vitro osteoinduction of human mesenchymal stem cells in biomimetic surface modified titanium alloy implants // Dent. Mater. J. 2012. Vol. 31. No. 5. P. 843–850. DOI: 10.4012/dmj.2012-015

[31]

Schwartz Z, Raz P, Zhao G, et al. Effect of micrometer-scale roughness of the surface of Ti6Al4V pedicle screws in vitro and in vivo. J Bone Joint Surg Am. 2008;90(11):2485–2498. DOI: 10.2106/JBJS.G.00499

[32]

Schwartz Z., Raz P., Zhao G., et al. Effect of micrometer-scale roughness of the surface of Ti6Al4V pedicle screws in vitro and in vivo // J. Bone Joint. Surg. Am. 2008. Vol. 90. No. 11. P. 2485–2498. DOI: 10.2106/JBJS.G.00499

[33]

Telegin SV, Lyasnikov VN, GotzI Yu. Morphology of the titanium surface modified by pulsed laser processing. Vestnik Saratov State Technical University. 2015;3(1):101–106. (In Russ.)

[34]

Телегин С.В., Лясников В.Н., Гоц И.Ю. Морфология поверхности титана, модифицированной импульсной лазерной обработкой // Вестник Саратовского государственного технического университета. 2015. Т. 3. № 1. С. 101–106.

[35]

Itälä A, Ylänen HO, Yrjans J, et al. Characterization of microrough bioactive glass surface: surface reactions and osteoblast responses in vitro. J Biomed Mater Res. 2002;62(3):404–411. DOI: 10.1002/jbm.10273J

[36]

Itälä A., Ylänen H.O., Yrjans J., et al. Characterization of microrough bioactive glass surface: surface reactions and osteoblast responses in vitro // J. Biomed. Mater. Res. 2002. Vol. 62. No. 3. P. 404–411. DOI: 10.1002/jbm.10273J

[37]

Olivares-Navarrete R, Raz P, Zhao G, et al. Integrin α2β1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates. Proc Natl Acad Sci USA. 2008;105(41):15767–15772. DOI: 10.1073/pnas.0805420105

[38]

Olivares-Navarrete R., Raz P., Zhao G., et al. Integrin α2β1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates // Proc. Natl. Acad. Sci. USA. 2008. Vol. 105. No. 41. P. 15767–15772. DOI: 10.1073/pnas.0805420105

[39]

Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21(7):667–681. DOI: 10.1016/S0142-9612(99)00242-2

[40]

Anselme K. Osteoblast adhesion on biomaterials // Biomaterials. 2000. Vol. 21. No. 7. P. 667–681. DOI: 10.1016/S0142-9612(99)00242-2

[41]

Keller JC, Stanford CM, Wightman JP, et al. Characterizations of titanium implant surfaces. III. J Biomed Mater Res. 1994;28(8):939–946. DOI: 10.1002/jbm.820280813

[42]

Keller J.C., Stanford C.M., Wightman J.P., et al. Characterizations of titanium implant surfaces. III // J. Biomed. Mater. Res. 1994. Vol. 28. No. 8. P. 939–946. DOI: 10.1002/jbm.820280813

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (743KB)

70

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/