Study of reactions of the sensorimotor system in adolescents during and after surgical correction of spinal deformity

Elena N. Shchurova , Marat S. Saifutdinov , Mekhriban A. Akhmedova , Dmitry M. Savin , Maksim A. Bogatyrev

Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2022, Vol. 10 ›› Issue (2) : 129 -142.

PDF (506KB)
Pediatric Traumatology, Orthopaedics and Reconstructive Surgery ›› 2022, Vol. 10 ›› Issue (2) : 129 -142. DOI: 10.17816/PTORS100676
Clinical studies
research-article

Study of reactions of the sensorimotor system in adolescents during and after surgical correction of spinal deformity

Author information +
History +
PDF (506KB)

Abstract

BACKGROUND: Little attention has been paid to the study of delayed sensory and motor reactions in adolescents with spinal deformities after surgical treatment.

AIM: To study the reactions of the sensorimotor system of adolescents after surgical correction of spinal deformity.

MATERIALS AND METHODS: The state of the sensory and motor spheres was analyzed in the immediate postoperative period in 21 adolescents with idiopathic scoliosis and in 13 with congenital deformities of the spine. A complex of methods involving global and stimulation electroneuromyography was used. The amplitude of motor, reflex potentials and interference electromyogram was evaluated at the maximum arbitrary tension of the lower limb muscles. Using an esthesiometer, thermal pain sensitivity in Th1–S2 dermatomes was explored. In the process of surgical correction, intraoperative neuromonitoring was performed with registration of motor evoked potentials of the lower limb muscles.

RESULTS: At the beginning of surgical intervention, high-amplitude, well-reproducible motor evoked potentials were obtained in all patients. In the group of patients with idiopathic scoliosis, compared with those with congenital deformities, smooth flow of surgery prevailed (p > 0.05) without significant changes in motor potentials relative to the baseline (p > 0.05). The number of observations of motor potentials decreased in the both groups and did not exceed 10%; the differences were not significant (p > 0.05). The study of the reactions of the sensorimotor system in the immediate postoperative period triggered an increase in the amplitude of M-responses of m. rectus femoris, m. flexor digitorum brevis, m. gastrocnemius, and a decrease in the amplitude of the total EMG of m. rectus femoris. Values of H-reflexes remained at the preoperative level. The analysis of thermal pain sensitivity demonstrated the presence of a more pronounced reaction than that of the motor component. Changes in indicators of this type of sensitivity in groups of adolescents with idiopathic and congenital scoliosis were opposite. In idiopathic scoliosis, negative dynamics of the values prevailed, while in adolescents with congenital deformities of the spine, positive dynamics prevailed. This was because the amount of correction of the main and compensatory curves of the deformity in the group with idiopathic scoliosis was 48% greater (p = 0.0004) and 51% greater (p = 0.011), respectively.

CONCLUSIONS: After surgical correction of spinal deformities in adolescents, the reactions of the sensory system of thermal pain sensitivity were more pronounced than those of the motor sphere.

Keywords

idiopathic scoliosis / congenital deformities of the spine / adolescents / surgical correction of the deformity / motor evoked potentials / М-responses / Н-responses / EMG / thermal pain sensitivity / intraoperative monitoring

Cite this article

Download citation ▾
Elena N. Shchurova, Marat S. Saifutdinov, Mekhriban A. Akhmedova, Dmitry M. Savin, Maksim A. Bogatyrev. Study of reactions of the sensorimotor system in adolescents during and after surgical correction of spinal deformity. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery, 2022, 10(2): 129-142 DOI:10.17816/PTORS100676

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hong JY, Suh SW, Lee SH, et al. Continuous distraction-induced delayed spinal cord injury on motor-evoked potentials and histological changes of spinal cord in a porcine model. Spinal Cord. 2016;54(9):649−655. DOI: 10.1038/sc.2015.231

[2]

Hong J.Y., Suh S.W., Lee S.H. et al. Continuous distraction-induced delayed spinal cord injury on motor-evoked potentials and histological changes of spinal cord in a porcine model // Spinal Cord. 2016. Vol. 54. No. 9. P. 649−655. DOI: 10.1038/sc.2015.231

[3]

Bell JES, Seifert JL, Shimizu EN, et al. Atraumatic spine distraction induces metabolic distress in spinal motor Neurons. J Neurotrauma. 2017;34(12):2034−2044. DOI: 10.1089/neu.2016.4779

[4]

Bell J.E.S., Seifert J.L., Shimizu E.N. et al. Atraumatic spine distraction induces metabolic distress in spinal motor Neurons // J. Neurotrauma. 2017. Vol. 34. No. 12. P. 2034−2044. DOI: 10.1089/neu.2016.4779

[5]

Bartley CE, Yaszay B, Bastrom TP, et al. Perioperative and delayed major complications following surgical treatment of fdolescent idiopathic scoliosis. J Bone Joint Surg Am. 2017;99(14):1206−1212. DOI: 10.2106/JBJS.16.01331

[6]

Bartley C.E., Yaszay B., Bastrom T.P. et al. Perioperative and delayed major complications following surgical treatment of adolescent idiopathic scoliosis // J. Bone Joint Surg. Am. 2017. Vol. 99. No. 14. P. 1206−1212. DOI: 10.2106/JBJS.16.01331

[7]

Cotrel Y, Dubousset J. A new technic for segmental spinal osteosynthesis using the posterior approach. Orthop Traumatol Surg Res. 2014;100:37–41. DOI: 10.1016/j.otsr.2013.12.009

[8]

Cotrel Y., Dubousset J. A new technic for segmental spinal osteosynthesis using the posterior approach // Orthop. Traumatol. Surg. Res. 2014. Vol. 100. P. 37–41. DOI: 10.1016/j.otsr.2013.12.009

[9]

Formby PM, Wagner SC, Kang DG, et al. Reoperation after in-theater combat spine surgery. Spine J. 2016;16:329–334. DOI: 10.1016/j.spinee.2015.11.027

[10]

Formby P.M., Wagner S.C., Kang D.G. et al. Reoperation after in-theater combat spine surgery // Spine J. 2016. Vol. 16. P. 329–334. DOI: 10.1016/j.spinee.2015.11.027

[11]

MacEwen GD, Bunnell WP, Sriram K. Acute neurological complications in the treatment of scoliosis. A report of the Scoliosis Research Society. J Bone Joint Surg Am. 1975;57:404–408.

[12]

MacEwen G.D., Bunnell W.P., Sriram K. Acute neurological complications in the treatment of scoliosis. A report of the Scoliosis Research Society // J. Bone Joint Surg. Am. 1975. Vol. 57. P. 404–408.

[13]

Cotrel Y, Dubousset J, Guillaumat M. New universal instrumentation in spinal surgery. Clin Orthop Relat Res. 1988;227:10–23.

[14]

Cotrel Y., Dubousset J., Guillaumat M. New universal instrumentation in spinal surgery // Clin. Orthop. Relat. Res. 1988. Vol. 227. P. 10–23.

[15]

Sansur CA, Smith JS, Coe JD, et al. Scoliosis research society morbidity and mortality of adult scoliosis surgery. Spine. 2011;36:E593. DOI: 10.1097/BRS.0b013e3182059bfd

[16]

Sansur C.A., Smith J.S., Coe J.D. et al. Scoliosis research society morbidity and mortality of adult scoliosis surgery // Spine. 2011. Vol. 36. P. E593. DOI: 10.1097/BRS.0b013e3182059bfd

[17]

Lopez AJ, Scheer JK, Smith ZA, et al. Management of flexion distraction injuries to the thoracolumbar spine. J Clin Neurosci. 2015;22:1853–1856. DOI: 10.1016/j.jocn.2015.03.062

[18]

Lopez A.J., Scheer J.K., Smith Z.A. et al. Management of flexion distraction injuries to the thoracolumbar spine // J. Clin. Neurosci. 2015. Vol. 22. P. 1853–1856. DOI: 10.1016/j.jocn.2015.03.062

[19]

Lavelle WF, Beltran AA, Carl AL, et al. Fifteen to twenty-five year functional outcomes of twenty-two patients treated with posterior Cotrel-Dubousset type instrumentation: a limited but detailed review of outcomes. Scoliosis Spinal Disord. 2016;11:18. DOI: 10.1186/s13013-016-0079-6

[20]

Lavelle W.F., Beltran A.A., Carl A.L. et al. Fifteen to twenty-five year functional outcomes of twenty-two patients treated with posterior Cotrel-Dubousset type instrumentation: a limited but detailed review of outcomes // Scoliosis Spinal. Disord. 2016. Vol. 11. P. 18. DOI: 10.1186/s13013-016-0079-6

[21]

Schwartz DM, Auerbach JD, Dormans JP, et al. Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg Am. 2007;89(11):2440−2449. DOI: 10.2106/JBJS.F.01476

[22]

Schwartz D.M., Auerbach J.D., Dormans J.P. et al. Neurophysiological detection of impending spinal cord injury during scoliosis surgery // J. Bone Joint Surg. Am. 2007. Vol. 89. P. 11. P. 2440−2449. DOI: 10.2106/JBJS.F.01476

[23]

Pahys JM, Guille JT, D’Andrea LP, et al. Neurologic injury in the surgical treatment of idiopathic scoliosis: guidelines for assessment and management. J Am Acad Orthop Surg. 2009;17:426–434. DOI: 10.5435/00124635-200907000-00003

[24]

Pahys J.M., Guille J.T., D’Andrea L.P. et al. Neurologic injury in the surgical treatment of idiopathic scoliosis: guidelines for assessment and management // J. Am. Acad. Orthop. Surg. 2009. Vol. 17. P. 426–434. DOI: 10.5435/00124635-200907000-00003

[25]

Wu J, Xue J, Huang R, et al. Arabbit model of lumbar distraction spinal cord injury. Spine J. 2016;16:643–658. DOI: 10.1016/j.spinee.2015.12.013

[26]

Wu J., Xue J., Huang R. et al. Arabbit model of lumbar distraction spinal cord injury // Spine J. 2016. Vol. 16. P. 643–658. DOI: 10.1016/j.spinee.2015.12.013

[27]

Iwahara T. The influence of spine distraction on cat spinal cord blood flow and evoked potentials. Ni-hon Seikeigeka Gakkai Zasshi. 1991;65(1):44−55.

[28]

Iwahara T. The influence of spine distraction on cat spinal cord blood flow and evoked potentials // Ni-hon Seikeigeka Gakkai Zasshi. 1991. Vol. 65. No. 1. P. 44−55.

[29]

Mironov SP, Vetrile ST, Natsvlishvili ZG, et al. Evaluation of the features of spinal blood circulation, microcirculation in the spinal cord tunics and neurovegetative regulation in scoliosis. Khirurgiia Pozvonochnika. 2006;3:38−48. (In Russ.)

[30]

Миронов С.П., Ветрилэ С.Т., Нацвлишвили З.Г. и др. Оценка особенностей спинального кровообращения, микроциркуляции в оболочках спинного мозга и нейровегетативной регуляции при сколиозе // Хирургия позвоночника. 2006. № 3. С. 38−48.

[31]

Cusick JF, Myklebust J, Zyvoloski M, et al. Effects of vertebral column distraction in the monkey. J Neurosurg. 1982;57(5):651−659. DOI: 10.3171/jns.1982.57.5.0651

[32]

Cusick J.F., Myklebust J., Zyvoloski M. et al. Effects of vertebral column distraction in the monkey // J. Neurosurg. 1982. Vol. 57. No. 5. P. 651−659. DOI: 10.3171/jns.1982.57.5.0651

[33]

Auerbach JD, Kean K, Milby AH, et al. Delayed postoperative neurologic deficits in spinal deformity surgery. Spine. 2016;41(3):E131−138. DOI: 10.1097/BRS.0000000000001194

[34]

Auerbach J.D., Kean K., Milby A.H., et al. Delayed postoperative neurologic deficits in spinal deformity surgery // Spine. 2016. Vol. 41. No. 3. P. E131−138. DOI: 10.1097/BRS.0000000000001194

[35]

Qiao J, Xiao L, Zhu Z, et al. Delayed postoperative neurologic deficit after spine deformity surgery: analysis of 5377 cases at 1 institution. World Neurosurg. 2018;111:e160−e164. DOI: 10.1016/j.wneu.2017.12.010

[36]

Qiao J., Xiao L., Zhu Z. et al. Delayed postoperative neurologic deficit after spine deformity surgery: analysis of 5377 cases at 1 institution // World Neurosurg. 2018. Vol. 111. P. e160−e164. DOI: 10.1016/j.wneu.2017.12.010

[37]

Lomaga IA, Malmberg SA, Tarasov NI, Petrukhin AS. Neurological syndromes for idiopathic progressing scolioses in children. Russkii Zhurnal Detskoi Nevrologii. 2008;3(3):12−19. (In Russ.)

[38]

Ломага И.А., Мальмберг С.А., Тарасов Н.И., Петрухин А.С. Неврологические синдромы при идиопатических прогрессирующих сколиозах у детей // Российский журнал детской неврологии. 2008. Т. III. № 3. С. 12–19.

[39]

Shein AP, Krivoruchko GA, Riabykh SO. Reactivity and resistance of cerebrospinal structures when performing instrumental correction of the spine deformities. Rossiiskii Fiziologicheskii Zhurnal im. IM Sechenova. 2016;102(12):1495−1504. (In Russ.)

[40]

Шеин А.П., Криворучко Г.А., Рябых С.О. Реактивность и резистентность спинномозговых структур при выполнении инструментальной коррекции деформаций позвоночника // Российский физиологический журнал им. И.М. Сеченова. 2016. Т. 102. № 12. С. 1495−1506.

[41]

Shchurova EN, Prudnikova OG, Ryabykh SO, Lipin SA. Comparative analysis of dynamics in thermal pain sensitivity after correction of severe and mild spine deformities in patients with idiopathic scoliosis. Genij Ortopedii. 2018;24(3):365−374. (In Russ.). DOI: 10.18019/1028-4427-2018-24-3-365-374

[42]

Щурова Е.Н., Прудникова О.Г., Рябых С.О., Липин С.А. Сравнительный анализ динамики температурно-болевой чувствительности после коррекции тяжелых и нетяжелых деформаций позвоночника у больных с идиопатическим сколиозом // Гений ортопедии. 2018. Т. 24. № 3. С. 365−374. DOI: 10.18019/1028-4427-2018-24-3-365-374

[43]

Shein AP, Sajfutdinov MS, Krivoruchko GA. Local and systemic responses of sensorimotor structures to limb elongation and ischemia. Kurgan: DAMMI; 2006. (In Russ.)

[44]

Шеин А.П., Сайфутдинов М.С., Криворучко Г.А. Локальные и системные реакции сенсомоторных структур на удлинение и ишемию конечностей. Курган: ДАММИ, 2006.

[45]

Saifutdinov MS, Ryabykh SO, Savin DM, Tretyakova AN. Formalizing the results of intraoperative neurophysiological monitoring of the motor pathways into the spinal cord during the surgical correction of spinal deformities. Grekov’s Bulletin of Surgery. 2018;177(1):49−53. (In Russ.). DOI: 10.24884/0042-4625-2018-177-1-49-53

[46]

Сайфутдинов М.С., Рябых С.О., Савин Д.М., Третьякова А.Н. Формализация результатов интраоперационного нейрофизиологического контроля моторных путей спинного мозга при хирургической коррекции деформаций позвоночника // Вестник хирургии имени И.И. Грекова. 2018. Т. 177. № 11. С. 49−53. DOI: 10.24884/0042-4625-2018-177-1-49-53

[47]

Saifutdinov MS, Ryabykh SO, Savin DM, Tretyakova AN. Quantitative characteristics of the risk of iatrogenic damage to the pyramidal tracts according to intraoperative neuromonitoring during surgical correction of spinal deformities. Voprosy nejrohirurgii. 2019;4:56−63. (In Russ.). DOI: 10.17116/neiro20198304156

[48]

Сайфутдинов М.С., Рябых С.О., Савин Д.М., Третьякова А.Н. Количественная характеристика риска ятрогенных повреждений пирамидных путей по данным интраоперационного нейромониторинга при хирургической коррекции деформаций позвоночника // Вопросы нейрохирургии. 2019. № 4. С. 56−63. DOI: 10.17116/neiro20198304156

[49]

Nikityuk IE, Vissarionov SV. Supporting function of the feet in children with severe forms of idiopathic scoliosis before and after surgical treatment. Genij Ortopedii. 2021;27(6):758−766. (In Russ.). DOI: 10.18019/1028-4427-2021-27-6-758-766

[50]

Никитюк И.Е., Виссарионов С.В. Особенности опорной функции стоп у детей с тяжелыми формами идио-патического сколиоза до и после хирургического лечения // Гений ортопедии. 2021. Т. 27. № 6. С. 758−766. DOI: 10.18019/1028-4427-2021-27-6-758-766

[51]

Lu WW, Hu Y, Luk KD, et al. Paraspinal muscle activities of patients with scoliosis after spine fusion: an electromyographic study. Spine. 2002;27(11):1180−1185. DOI: 10.1097/00007632-200206010-00009

[52]

Lu W.W., Hu Y., Luk K.D. et al. Paraspinal muscle activities of patients with scoliosis after spine fusion: an electromyographic study // Spine. 2002. Vol. 27. No. 11. P. 1180−1185. DOI: 10.1097/00007632-200206010-00009

[53]

Suk SI, Kim WJ, Lee SM, et al. Thoracic pedicle screw fixation in spinal deformities: Are they really safe? Spine. 2001;26(18):2049−2057. DOI: 10.1097/00007632-200109150-00022

[54]

Suk S.I., Kim W.J., Lee S.M. et al. Thoracic pedicle screw fixation in spinal deformities: Are they really safe? // Spine. 2001. Vol. 26. No. 18. P. 2049−2057. DOI: 10.1097/00007632-200109150-00022

[55]

Rose PS, Lenke LG, Bridwell KH, et al. Pedicle screw instrumentation for adult idiopathic scoliosis: an improvement over hook/hybrid fixation. Spine. 2009;34(8):852–857. DOI: 10.1097/BRS.0b013e31818e5962

[56]

Rose P.S., Lenke L.G., Bridwell K.H. et al. Pedicle screw instrumentation for adult idiopathic scoliosis: an improvement over hook/hybrid fixation // Spine. 2009. Vol. 34. No. 8. P. 852–857. DOI: 10.1097/BRS.0b013e31818e5962

[57]

Diab M, Smith AR, Kuklo TR. Neural complications in the surgical treatment of adolescent idiopathic scoliosis. Spine. 2007;32(24):2759−2763. DOI: 10.1097/BRS.0b013e31815a5970

[58]

Diab M., Smith A.R., Kuklo T.R. Neural complications in the surgical treatment of adolescent idiopathic scoliosis // Spine. 2007. Vol. 32. No. 24. P. 2759−2763. DOI: 10.1097/BRS.0b013e31815a5970

[59]

Guidera KJ, Hooten J, Weatherly W, et al. Cotrel-Dubousset instrumentation. Results in 52 patients. Spine. 1993;18 (4): 427−431

[60]

Guidera K.J., Hooten J., Weatherly W. et al. Cotrel-Dubousset instrumentation. Results in 52 patients // Spine. 1993. Vol. 18. No. 4. P. 427–431.

[61]

Awwad W, Bassi M, Shrier I, et al. Mitigating spinal cord distraction injuries: the effect of durotomy in decreasing cord interstitial pressure in vitro. Eur J Orthop Surg Traumatol. 2014;24(Suppl 1):S261−S267. DOI: 10.1007/s00590-013-1409-5

[62]

Awwad W., Bassi M., Shrier I. et al. Mitigating spinal cord distraction injuries: the effect of durotomy in decreasing cord interstitial pressure in vitro // Eur. J. Orthop. Surg. Traumatol. 2014. Vol. 24. Suppl. 1. P. S261−S267. DOI: 10.1007/s00590-013-1409-5

RIGHTS & PERMISSIONS

Shchurova E.N., Saifutdinov M.S., Akhmedova M.A., Savin D.M., Bogatyrev M.A.

AI Summary AI Mindmap
PDF (506KB)

65

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/