Intraoperative application of photodynamic therapy as a method of inactivation of uropathogenic flora (pilot study)

Olga S. Streltsova , Artem E. Antonian , Vadim V. Elagin , Nadezhda I. Ignatova , Katerina E. Yunusovа , Tatiana R. Zhilyaeva-Fomina , Valery F. Lazukin , Valadislav A. Kamensky

Urology reports (St. - Petersburg) ›› 2023, Vol. 13 ›› Issue (4) : 347 -357.

PDF (3202KB)
Urology reports (St. - Petersburg) ›› 2023, Vol. 13 ›› Issue (4) : 347 -357. DOI: 10.17816/uroved595870
Original study
research-article

Intraoperative application of photodynamic therapy as a method of inactivation of uropathogenic flora (pilot study)

Author information +
History +
PDF (3202KB)

Abstract

BACKGROUND: The predictor of experimental work on animals on the use of antimicrobial photodynamic therapy to neutralize antibiotic-resistant strains of microorganisms was the analysis of the microbial landscape of patients’ urine and swabbings from the working surfaces of objects of the urological hospital.

AIM: The aim of the study is was to study the possibility of intraoperative photodynamic inactivation of uropathogenic microorganisms.

MATERIALS AND METHODS: Analysis of the species specificity of microorganisms was performed based on the results of urine cultures of patients in a urological hospital and external introduction infections over the past 10 years. The experimental part of the work was carried out on 7 animals (pigs). Photodynamic therapy was performed intraoperatively by local injection into the animals’ renal pelvis of the photosensitizer photoditazine in physiological solution with the addition of the nonionic surfactant Triton X-100 to a concentration of 10%. To study the damaging effect on the tissue of the pelvis, a histological study of animal kidneys was performed. To assess the biocidal effect on uropathogenic bacteria introduced into the renal pelvis, we used suspensions of daily test cultures (1 × 108 CFU/ml) of microorganisms most often found in the stones of patients with urolithiasis.

RESULTS: Escherichia coli, Enterobacter cloacae, Staphylococcus epidermidis, Enterococcus faecalis и Klebsiella pneumonia were the most frequently present in urine over 10 years. The safety of using photodynamic therapy in the renal pelvis of animals was comprehensively studied. It was found that the accumulation of the photosensitizer by the cells of the lining epithelium of the renal pelvis did not occur; the photosensitizer solution in the renal pelvis was not heated during photodynamic therapy. Histological examination established the absence of significant damage to the epithelium of the renal pelvis of the animals under the influence of various irradiation modes. The analysis of the bactericidal activity of the method used showed that photodynamic therapy leads to the death of 99.9% of E. coli and 99% of S. aureus.

CONCLUSIONS: The experiment established that intraoperative photodynamic therapy is an effective and safe method of inactivating uropathogenic microorganisms, which allows it to be considered as an alternative to antibiotic therapy.

Keywords

photodynamic therapy / inactivation of uropathogenic flora / antibacterial PDT / biocidal effect of PDT / prevention of postoperative complications

Cite this article

Download citation ▾
Olga S. Streltsova, Artem E. Antonian, Vadim V. Elagin, Nadezhda I. Ignatova, Katerina E. Yunusovа, Tatiana R. Zhilyaeva-Fomina, Valery F. Lazukin, Valadislav A. Kamensky. Intraoperative application of photodynamic therapy as a method of inactivation of uropathogenic flora (pilot study). Urology reports (St. - Petersburg), 2023, 13(4): 347-357 DOI:10.17816/uroved595870

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cicerello E, Mangano M, Cova G, et al. Metabolic evaluation in patients with infected nephrolithiasis: is it necessary? Arch Ital Urol Androl. 2016;88(3):208–211. DOI: 10.4081/aiua.2016.3.208

[2]

Cicerello E., Mangano M., Cova G., et al. Metabolic evaluation in patients with infected nephrolithiasis: is it necessary? // Arch Ital Urol Androl. 2016. Vol. 88, No. 3. P. 208–211. DOI: 10.4081/aiua.2016.3.208

[3]

Yu M, Romanova NS, Mulabaev ER. Tolordava et al. Microbial communities on urinary stones. Molecular Genetics, Microbiology and Virology. 2015;33(2):20–25. (In Russ.)

[4]

Романова Ю.М., Мулабаев Н.С., Толордава Э.Р., и др. Микробные сообщества на мочевых камнях // Молекулярная генетика, микробиология и вирусология. 2015. Т. 33, № 2. С. 20–25.

[5]

Degirmenci T, Bozkurt I, Celik S, et al. Does leaving residual fragments after percutaneous nephrolithotomy in patients with positive stone culture and/or renal pelvic urine culture increase the risk of infectious complications? Urolithiasis. 2019;47(4):371–375. DOI: 10.1007/s00240-018-1063-9

[6]

Degirmenci T., Bozkurt I., Celik S., et al. Does leaving residual fragments after percutaneous nephrolithotomy in patients with positive stone culture and/or renal pelvic urine culture increase the risk of infectious complications? // Urolithiasis. 2019. Vol. 47, No. 4. P. 371–375. DOI: 10.1007/s00240-018-1063-9

[7]

Liu Y, Lu J, Hao Y, et al. Predicting model based on risk factors for urosepsis after percutaneous nephrolithotomy. Journal of Peking University. Health Sciences. 2018;50(3):507–513.

[8]

Liu Y., Lu J., Hao Y., et al. Predicting model based on risk factors for urosepsis after percutaneous nephrolithotomy // Journal of Peking University. Health Sciences. 2018. Vol. 50, No. 3. P. 507–513.

[9]

Koras O, Bozkurt I, Yonguc T, et al. Risk factors for postoperative infectious complications following percutaneous nephrolithotomy: a prospective clinical study. Urolithiasis. 2015;43(1):55–60.

[10]

Koras O., Bozkurt I., Yonguc T., et al. Risk factors for postoperative infectious complications following percutaneous nephrolithotomy: a prospective clinical study // Urolithiasis. 2015. Vol. 43, No. 1. P. 55–60.

[11]

Yang T, Liu S, Hu J, et al. The evaluation of risk factors for postoperative infectious complications after percutaneous nephrolithotomy. BioMed Res Int. 2017;2017:4832051. DOI: 10.1155/2017/4832051

[12]

Yang T., Liu S., Hu J., et al. The evaluation of risk factors for postoperative infectious complications after percutaneous nephrolithotomy // BioMed Res Int. 2017. Vol. 2017. P. 4832051. DOI: 10.1155/2017/4832051

[13]

Margel D, Ehrlich Y, Brown N, et al. Clinical implication of routine stone culture in percutaneous nephrolithotomy — a prospective study. Urology. 2006;67(1):26–29. DOI: 10.1016/j.urology.2005.08.008

[14]

Margel D., Ehrlich Y., Brown N., et al. Clinical implication of routine stone culture in percutaneous nephrolithotomy — a prospective study // Urology. 2006. Vol. 67, No. 1. P. 26–29. DOI: 10.1016/j.urology.2005.08.008

[15]

Türk C, Neisius A, Petrik A, et al. EAU Guidelines on urolithiasis / European Association of Urology. 2020. 87 p. Available from: https://uroweb.org/wp-content/uploads/EAU-Guidelines-on-Urolithiasis-2020.pdf [accessed: 29.07.2021]

[16]

Türk C., Neisius A., Petrik A., et al. EAU Guidelines on urolithiasis / European Association of Urology. 2020. 87 p. Режим доступа: https://uroweb.org/wp-content/uploads/EAU-Guidelines-on-Urolithiasis-2020.pdf. Дата обращения: 29.07.2021.

[17]

Gonen M, Turan H, Ozturk B, Ozkardes H. Factors affecting fever following percutaneous nephrolithotomy: a prospective clinical study. Journal of Endourology. 2008;22(9):2135–2138. DOI: 10.1089/end.2008.0139

[18]

Gonen M., Turan H., Ozturk B., Ozkardes H. Factors affecting fever following percutaneous nephrolithotomy: a prospective clinical study // Journal of Endourology. 2008. Vol. 22, No. 9. P. 2135–2138. DOI: 10.1089/end.2008.0139

[19]

Yanovskaya OA. Safe hospital environment. Infection safety. Hospital-acquired infection. Relevance of the problem: methodical manual. Irkutsk: IGMU; 2014. 65 p. (In Russ.)

[20]

Яновская О.А. Безопасная больничная среда. Инфекционная безопасность. Внутрибольничная инфекция. Актуальность проблемы: методическое пособие. Иркутск: ИГМУ, 2014. 65 с.

[21]

Kato H, Komagoe K, Inoue T, et al. Structure-activity relationship of porphyrin — induced photoinactivation with membrane function in bacteria and erythrocytes. Photochem. Photobiol. Sci. 2018;17(7):954–963. DOI: 10.1039/C8PP00092A

[22]

Kato H., Komagoe K., Inoue T., et al. Structure–activity relationship of porphyrin- induced photoinactivation with membrane function in bacteria and erythrocytes // Photochem Photobiol Sci. 2018. Vol. 17, No. 7. P. 954–963. DOI: 10.1039/C8PP00092A

[23]

Tuchina ES. Some aspects of antimicrobial photodynamic effect. Izvestiya of Saratov University. New Series. Series: Chemistry. Biology. Ecology. 2022;22(1):33–46. DOI: 10.18500/1816-9775-202222-1-33-46

[24]

Тучина Е.С. Некоторые аспекты антимикробного фотодинамического воздействия // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2022. Т. 22, № 1. С. 33–46. DOI: 10.18500/1816-9775-202222-1-33-46

[25]

Kashtanova MS, Morozova NS, Aslanova DR. Photodynamic therapy using methylene blue in children with cerebral. 2021;23(4):31–35. Medical & Pharmaceutical Journal “Pulse”. DOI: 10.26787/nydha-2686-6838-2021-23-4-31-35

[26]

Каштанова М.С., Морозова Н.С., Асланова Д.Р. Фотодинамическая терапия с применением метиленового синего у детей с церебральным параличом // Медико-фармацевтический журнал «Пульс». 2021. Т. 23, № 4. С. 31–35. DOI: 10.26787/nydha-2686-6838-2021-23-4-31-35

[27]

Baranov AV, Tsyganova GI, Pimenova LYa, Kartusova LN. State-of-art of researches on photodynamic therapy in the Russian Federation in 2016–2017. Laser Medicine. 2018;22(3):44–49. (In Russ.)

[28]

Баранов А.В., Цыганова Г.И., Пименова Л.Я., Картусова Л.Н. Состояние научных исследований в области фотодинамической терапии в Российской Федерации в 2016–2017 гг. // Лазерная медицина. 2018. Т. 22, № 3. С. 44–49.

[29]

Maisch T, Eichner A, Spath A, et al. Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives. PLoS ONE. 2014;9(12): e111792. DOI: 10.1371/journal.pone. 0111792

[30]

Maisch T., Eichner A., Spath A., et al. Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives // PLoS ONE. 2014. Vol. 9, No. 12. P. e111792. DOI: 10.1371/journal.pone. 0111792

[31]

Wozniak A, Grinholc M. Combined antimicrobial activity of photodynamic inactivation and antimicrobials — state of the art. Front Microbiol. 2018;9:930. DOI: 10.3389/fmicb.2018.00930

[32]

Wozniak A., Grinholc M. Combined antimicrobial activity of photodynamic inactivation and antimicrobials — state of the art // Front Microbiol. 2018. Vol. 9. P. 930. DOI: 10.3389/fmicb.2018.00930

[33]

Rapacka-Zdonczyk A, Wozniak A, Michalska K, et al. Factors determining the susceptibility of bacteria to antibacterial photodynamic inactivation. Front Med (Lausanne). 2021;8:642609. DOI: 10.3389/fmed.2021.642609

[34]

Rapacka-Zdonczyk A., Wozniak A., Michalska K., et al. Factors determining the susceptibility of bacteria to antibacterial photodynamic inactivation // Front Med (Lausanne). 2021. Vol. 8. P. 642609. DOI: 10.3389/fmed.2021.642609

[35]

Ignatova N, Ivanova T, Antonyan A, et al. Efficacy of photodynamic inactivation against the major human antibiotic resistant uropathogens. Photonics. 2021;8(11):495. DOI: 10.3390/photonics8110495

[36]

Ignatova N., Ivanova T., Antonyan A., et al. Efficacy of photodynamic inactivation against the major human antibiotic resistant uropathogens // Photonics. 2021. Vol. 8, No. 11. P. 495. DOI: 10.3390/photonics8110495

[37]

Clinical laboratory diagnostics: national manual. In 2. Vol. Vol. 1. In: Dolgov VD, Menshikov VV., editors. Moscow: GEOTAR-Media; 2012. 928 p. (In Russ.)

[38]

Клиническая лабораторная диагностика: национальное руководство. В 2 т. Т. 1 / под ред. В.Д. Долгова, В.В. Меньшикова. Москва: ГЭОТАР-Медиа, 2012. 928 с.

[39]

Senocak C, Ozcan C, Sahin T, et al. Risk factors of infectious complications after flexible uretero-renoscopy with laser lithotripsy. Urology Journal. 2018;15(4):158–163. DOI: 10.22037/uj.v0i0.3967

[40]

Senocak C., Ozcan C., Sahin T., et al. Risk factors of infectious complications after flexible uretero-renoscopy with laser lithotripsy // Urology Journal. 2018. Vol. 15, No. 4. P. 158–163. DOI: 10.22037/uj.v0i0.3967

[41]

Dai T, Huang YY, Hamblin MR. Photodynamic therapy for localized infections — state of art. Photodeagnosis Photodyn Ther. 2009;6(3–4):170–188. DOI: 10.1016/j.pdpdt.2009.10.008

[42]

Dai T., Huang Y.Y., Hamblin M.R. Photodynamic therapy for localized infections — state of art // Photodeagnosis Photodyn Ther. 2009. Vol. 6, No. 3–4. P. 170–188. DOI: 10.1016/j.pdpdt.2009.10.008

[43]

Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev. 2020;100(4): 1621–1705. DOI: 10.1152/physrev.00041.2019

[44]

Dalghi M.G., Montalbetti N., Carattino M.D., Apodaca G. The urothelium: life in a liquid environment // Physiol Rev. 2020. Vol. 100, No. 4. P. 1621–1705. DOI: 10.1152/physrev.00041.2019

[45]

Tarasenko AI, Pushkarev AM, Rakipov IG, et al. Biomarkers of renal injury in contact ureteral lithotripsy. Urologia. 2017;(5):75–79. (In Russ.) DOI: 10.18565/urology.2017.5.75-79

[46]

Тарасенко А.И., Пушкарев А.М., Ракипов И.Г., и др. Биомаркеры повреждения почек при контактной уретеролитотрипсии // Урология. 2017. № 5. С. 75–79.

[47]

Velkov VV. Cystatin C — new opportunities and new challenges for laboratory diagnostics. Pushchino: ZAO Diakon, 2010; P. 73. (In Russ.) Available from: http://www.diakonlab.ru/files/Docs/SciArticles/Cystatin_C_Rev_Site(2).pdf

[48]

Вельков В.В. Цистатин С — новые возможности и новые задачи для лабораторной дигностики. Пущино: ЗАО Диакон, 2010. С. 73. Режим доступа: http://www.diakonlab.ru/files/Docs/SciArticles/Cystatin_C_Rev_Site(2).pdf.

Funding

Российский научный фондRussian Science Foundation(21-15-00371)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (3202KB)

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/