Clinical aspects of the applicability of biomarkers of acute kidney injury in ischemia-reperfusion in operative urology

Sergey V. Popov , Ruslan G. Guseinov , Konstantin V. Sivak , Vitaliy V. Perepelitsa , Nikolai S. Bunenkov , Tatiana A. Lelyavina

Urology reports (St. - Petersburg) ›› 2024, Vol. 14 ›› Issue (2) : 209 -216.

PDF (284KB)
Urology reports (St. - Petersburg) ›› 2024, Vol. 14 ›› Issue (2) : 209 -216. DOI: 10.17816/uroved569117
Reviews
review-article

Clinical aspects of the applicability of biomarkers of acute kidney injury in ischemia-reperfusion in operative urology

Author information +
History +
PDF (284KB)

Abstract

The development of acute kidney injury during surgical renal-preserving interventions characterizes the nature of the clinical course and prognosis for the development of chronic kidney disease. The use of standard indicators of disease progression (serum creatinine and urea nitrogen) in clinical practice can lead to unfavorable outcomes of acute kidney injury due to their low sensitivity and high specificity against the background of damage to more than 50% of the renal parenchyma). Other biomarkers of acute kidney injury (cystatin C, IL-18, KIM-1, NGAL, L-FABP, NAG and others) are superior to creatinine in sensitivity and specificity, but require additional research to identify the most optimal ones for clinical practice.

Keywords

acute kidney injury / partial nephrectomy / creatinine / ischemia-reperfusion / cystatin C

Cite this article

Download citation ▾
Sergey V. Popov, Ruslan G. Guseinov, Konstantin V. Sivak, Vitaliy V. Perepelitsa, Nikolai S. Bunenkov, Tatiana A. Lelyavina. Clinical aspects of the applicability of biomarkers of acute kidney injury in ischemia-reperfusion in operative urology. Urology reports (St. - Petersburg), 2024, 14(2): 209-216 DOI:10.17816/uroved569117

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ostermann M, Basu RK, Mehta RL. Acute kidney injury. Intensive Care Med. 2023;49(2):219–222. doi: 10.1007/s00134-022-06946-0

[2]

Ostermann M., Basu R.K., Mehta R.L. Acute kidney injury // Intensive Care Med. 2023. Vol. 49, N 2. P. 219–222. doi: 10.1007/s00134-022-06946-0

[3]

Jana S, Mitra P, Roy S. Proficient novel biomarkers guide early detection of acute kidney injury: A review. Diseases. 2022;11(1):8. doi: 10.3390/diseases11010008

[4]

Jana S., Mitra P., Roy S. Proficient novel biomarkers guide early detection of acute kidney injury: A review // Diseases. 2022. Vol. 11, N 1. ID 8. doi: 10.3390/diseases11010008

[5]

Chaïbi K, Ehooman F, Pons B, et al. Long-term outcomes after severe acute kidney injury in critically ill patients: the SALTO study. Ann Intensive Care. 2023;13(1):18. doi: 10.1186/s13613-023-01108-x

[6]

Chaïbi K., Ehooman F., Pons B., et al. Long-term outcomes after severe acute kidney injury in critically ill patients: the SALTO study // Ann Intensive Care. 2023. Vol. 13, N 1. ID 18. doi: 10.1186/s13613-023-01108-x

[7]

Becker F, Van Poppel H, Hakenberg OW, et al. Assessing the impact of ischaemia time during partial nephrectomy. Eur Urol. 2009;56(4):625–634. doi: 10.1016/j.eururo.2009.07.016

[8]

Becker F., Van Poppel H., Hakenberg O.W., et al. Assessing the impact of ischaemia time during partial nephrectomy // Eur Urol. 2009. Vol. 56, N 4. P. 625–634. doi: 10.1016/j.eururo.2009.07.016

[9]

Shkarupa DD. Organ-preserving surgery of neoplasms of the Kidney: technique and functional results (experimental-clinical study) [dissertation abstract]. Saint Petersburg; 2009. 24 p. (In Russ.)

[10]

Шкарупа Д.Д. Органосохраняющая хирургия новообразований почки: техника и функциональные результаты (экспериментально-клиническое исследование): автореф. дис. … канд. мед. наук. Санкт-Петербург, 2009. 24 с.

[11]

Orvieto MA, Zom KC, Mendiola FP, et al. Ischemia preconditioning does not confer resilience to warm ischemia in a solitary porcine kidney model. Urology. 2007;69(5):984–987. doi: 10.1016/j.urology.2007.01.100

[12]

Orvieto M.A., Zom K.C., Mendiola F.P., et al. Ischemia preconditioning does not confer resilience to warm ischemia in a solitary porcine kidney model // Urology. 2007. Vol. 69, N 5. P. 984–987. doi: 10.1016/j.urology.2007.01.100

[13]

Turgut F, Awad AS, Abdel-Rahman EM. Acute kidney injury: Medical causes and pathogenesis. J Clin Med. 2023;12(1):375. doi: 10.3390/jcm12010375

[14]

Turgut F., Awad A.S., Abdel-Rahman E.M. Acute kidney injury: Medical causes and pathogenesis // J Clin Med. 2023. Vol. 12, N 1. ID 375. doi: 10.3390/jcm12010375

[15]

Satalkar VS, Swamy KV. Pathophysiology of acute kidney injury on a molecular level: A brief review. MGM J Med Sci. 2022;9(4): 577–584. doi: 10.4103/mgmj.mgmj_161_22

[16]

Satalkar V.S., Swamy K.V. Pathophysiology of acute kidney injury on a molecular level: A brief review // MGM J Med Sci. 2022. Vol. 9, N 4. P. 577–584. doi: 10.4103/mgmj.mgmj_161_22

[17]

Kellum JA, Romagnani P, Ashuntantang G, et al. Acute kidney injury. Nat Rev Dis Primers. 2021;7(1):52. doi: 10.1038/s41572-021-00284-z

[18]

Kellum J.A., Romagnani P., Ashuntantang G., et al. Acute kidney injury // Nat Rev Dis Primers. 2021. Vol. 7, N 1. ID 52. doi: 10.1038/s41572-021-00284-z

[19]

Liu C, Yan S, Wang Y, et al. Drug-induced hospital-acquired acute kidney injury in China: A multicenter cross-sectional survey. Kidney Dis (Basel). 2021;7(2):143–155. doi: 10.1159/000510455

[20]

Liu C., Yan S., Wang Y., et al. Drug-induced hospital-acquired acute kidney injury in China: A multicenter cross-sectional survey // Kidney Dis (Basel). 2021. Vol. 7, N 2. P. 143–155. doi: 10.1159/000510455

[21]

Sidorenko YuS, Ushakova ND, Maslov AA, Yashkina AV. Renal reperfusion lesion in patients with postrenal obstruction. General Reanimatology. 2007;3(6):164–167. EDN: IBZSKH doi: 10.15360/1813-9779-2007-6-164-167

[22]

Сидоренко Ю.С., Ушакова Н.Д., Маслов А.А., Яшкина А.В. Реперфузионное повреждение почек у больных с постренальной обструкцией // Общая реаниматология. 2007. Т. 3, № 6. С. 164–167. EDN: IBZSKH doi: 10.15360/1813-9779-2007-6-164-167

[23]

Yoon S-Y, Kim J-S, Jeong K-H, Kim S-K. Acute kidney injury: Biomarker-guided diagnosis and management. Medicina (Kaunas). 2022;58(3):340. doi: 10.3390/medicina58030340

[24]

Yoon S.-Y., Kim J.-S., Jeong K.-H., Kim S.-K. Acute kidney injury: Biomarker-guided diagnosis and management // Medicina (Kaunas). 2022. Vol. 58, N 3. ID 340. doi: 10.3390/medicina58030340

[25]

Schunk SJ, Zarbock A, Meersch M, et al. Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: An observational cohort study. Lancet. 2019;394(10197):488–496. doi: 10.1016/S0140-6736(19)30769-X

[26]

Schunk S.J., Zarbock A., Meersch M., et al. Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: An observational cohort study // Lancet. 2019. Vol. 394, N 10197. P. 488–496. doi: 10.1016/S0140-6736(19)30769-X

[27]

de Geus HRH, Betjes MG, Bakker J. Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges. Clin Kidney J. 2012;5(2):102–108. doi: 10.1093/ckj/sfs008

[28]

De Geus H.R.H., Betjes M.G., Bakker J. Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges // Clin Kidney J. 2012. Vol. 5, N 2. P. 102–108. doi: 10.1093/ckj/sfs008

[29]

Kokkoris S, Pipili C, Grapsa E, et al. Novel biomarkers of acute kidney injury in the general adult ICU: a review. Ren Fail. 2013;35(4):579–591. doi: 10.3109/0886022X.2013.773835

[30]

Kokkoris S., Pipili C., Grapsa E., et al. Novel biomarkers of acute kidney injury in the general adult ICU: a review // Ren Fail. 2013. Vol. 35, N 4. P. 579–591. doi: 10.3109/0886022X.2013.773835

[31]

Tsigou E, Psallida V, Demponeras C, et al. Role of new biomarkers: functional and structural damage. Crit Care Res Pract. 2013;2013:361078. doi: 10.1155/2013/361078

[32]

Tsigou E., Psallida V., Demponeras C., et al. Role of new biomarkers: functional and structural damage // Crit Care Res Pract. 2013. Vol. 2013. ID 361078. doi: 10.1155/2013/361078

[33]

Chen DC, Potok OA, Rifkin D, Estrella MM. Advantages, limitations, and clinical considerations in using cystatin C to estimate GFR. Kidney360. 2022;3(10):1807–1814. doi: 10.34067/KID.0003202022

[34]

Chen D.C., Potok O.A., Rifkin D., Estrella M.M. Advantages, limitations, and clinical considerations in using cystatin C to estimate GFR // Kidney360. 2022. Vol. 3, N 10. P. 1807–1814. doi: 10.34067/KID.0003202022

[35]

Porrini E, Ruggenenti P, Luis-Lima S, et al. Estimated GFR: time for a critical appraisal. Nat Rev Nephrol. 2019;15(3):177–190. doi: 10.1038/s41581-018-0080-9

[36]

Porrini E., Ruggenenti P., Luis-Lima S., et al. Estimated GFR: time for a critical appraisal // Nat Rev Nephrol. 2019. Vol. 15, N 3. P. 177–190. doi: 10.1038/s41581-018-0080-9

[37]

Mårtensson J, Jonsson N, Glassford NJ, et al. Plasma endostatin may improve acute kidney injury risk prediction in critically ill patients. Ann Intensive Care. 2016;6(1):6. doi: 10.1186/s13613-016-0108-x

[38]

Mårtensson J., Jonsson N., Glassford N.J., et al. Plasma endostatin may improve acute kidney injury risk prediction in critically ill patients // Ann Intensive Care. 2016. Vol. 6, N 1. ID 6. doi: 10.1186/s13613-016-0108-x

[39]

Mussap M, Dalla Vestra M, Fioretto P, et al. Cystatin C is a more sensitive marker than creatinine for the estimation of GFR in type 2 diabetic patients. Clin Nephrol Epidimiol Clin Trials. 2002;61(4): 1453–1461. doi: 10.1046/j.1523-1755.2002.00253.x

[40]

Mussap M., Dalla Vestra M., Fioretto P., et al. Cystatin C is a more sensitive marker than creatinine for the estimation of GFR in type 2 diabetic patients // Clin Nephrol Epidimiol Clin Trials. 2002. Vol. 61, N 4. P. 1453–1461. doi: 10.1046/j.1523-1755.2002.00253.x

[41]

Proletov IaIu, Saganova ES, Smirnov AV. Biomarkers in the diagnosis of acute kidney injury. Communication I. Nephrology (Saint-Petersburg). 2014;18(4):25–35. EDN: SHOCVH

[42]

Пролетов Я.Ю., Саганова Е.С., Смирнов А.В. Биомаркеры в диагностике острого повреждения почек. Сообщение I // Нефрология. 2014. Т. 18, № 4. С. 25–35. EDN: SHOCVH

[43]

Ah YL, Moo SP, Byung HP, et al. Value of serum cystatin C measurement in the diagnosis of sepsis-induced kidney injury and prediction of renal function recovery. Yonsei Med J. 2017;58(3):604–612. doi: 10.3349/ymj.2017.58.3.604

[44]

Ah Y.L., Moo S.P., Byung H.P., et al. Value of serum cystatin C measurement in the diagnosis of sepsis-induced kidney injury and prediction of renal function recovery // Yonsei Med J. 2017. Vol. 58, N 3. P. 604–612. doi: 10.3349/ymj.2017.58.3.604

[45]

Pei Y, Zhou G, Wang P, et al. Serum cystatin C, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, klotho and fibroblast growth factor-23 in the early prediction of acute kidney injury associated with sepsis in a Chinese emergency cohort study. Eur J Med Res. 2022;27(1):39. doi: 10.1186/s40001-022-00654-7

[46]

Pei Y., Zhou G., Wang P., et al. Serum cystatin C, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, klotho and fibroblast growth factor-23 in the early prediction of acute kidney injury associated with sepsis in a Chinese emergency cohort study // Eur J Med Res. 2022. Vol. 27, N 1. ID 39. doi: 10.1186/s40001-022-00654-7

[47]

Sandokji I, Greenberg JH. Biomarkers for acute kidney injury in children — where are we now? Curr Opin Pediatr. 2023;35(2): 245–250. doi: 10.1097/MOP.0000000000001217

[48]

Sandokji I., Greenberg J.H. Biomarkers for acute kidney injury in children — where are we now? // Curr Opin Pediatr. 2023. Vol. 35, N 2. P. 245–250. doi: 10.1097/MOP.0000000000001217

[49]

Hirooka Y, Nozaki Y. Interleukin-18 in inflammatory kidney disease. Front Med (Lausanne). 2021;8:639103. doi: 10.3389/fmed.2021.639103

[50]

Hirooka Y., Nozaki Y. Interleukin-18 in inflammatory kidney disease // Front Med (Lausanne). 2021. Vol. 8. ID 639103. doi: 10.3389/fmed.2021.639103

[51]

Shao X, Tian L, Xu W, et al. Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a meta-analysis. PLoS ONE. 2014;9(1): e84131. doi: 10.1371/journal.pone.0084131

[52]

Shao X., Tian L., Xu W., et al. Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a meta-analysis // PLoS ONE. 2014. Vol. 9, N 1. ID e84131. doi: 10.1371/journal.pone.0084131

[53]

Geng J, Qiu Y, Qin Z, Su B. The value of kidney injury molecule 1 in predicting acute kidney injury in adult patients: a systematic review and Bayesian meta-analysis. J Transl Med. 2021;19(1):105. doi: 10.1186/s12967-021-02776-8

[54]

Geng J., Qiu Y., Qin Z., Su B. The value of kidney injury molecule 1 in predicting acute kidney injury in adult patients: a systematic review and Bayesian meta-analysis // J Transl Med. 2021. Vol. 19, N 1. ID 105. doi: 10.1186/s12967-021-02776-8

[55]

Chang W, Zhu S, Pan C, et al. Predictive utilities of neutrophil gelatinase-associated lipocalin (NGAL) in severe sepsis. Clin Chim Acta. 2018;481:200–206. doi: 10.1016/j.cca.2018.03.020

[56]

Chang W., Zhu S., Pan C., et al. Predictive utilities of neutrophil gelatinase-associated lipocalin (NGAL) in severe sepsis // Clin Chim Acta. 2018. Vol. 481. P. 200–206. doi: 10.1016/j.cca.2018.03.020

[57]

Iguchi N, Uchiyama A, Ueta K, et al. Neutrophil gelatinase-associated lipocalin and liver-type fatty acid-binding protein as biomarkers for acute kidney injury after organ transplantation. J Anesth. 2015;29(2):249–255. doi: 10.1007/s00540-014-1909-4

[58]

Iguchi N., Uchiyama A., Ueta K., et al. Neutrophil gelatinase-associated lipocalin and liver-type fatty acid-binding protein as biomarkers for acute kidney injury after organ transplantation // J Anesth. 2015. Vol. 29, N 2. P. 249–255. doi: 10.1007/s00540-014-1909-4

[59]

Lipiec K, Adamczyk P, Świętochowska E, et al. L-FABP and IL-6 as markers of chronic kidney damage in children after hemolytic uremic syndrome. Adv Clin Exp Med. 2018;27(7):955–962. doi: 10.17219/acem/70567

[60]

Lipiec K., Adamczyk P., Świętochowska E., et al. L-FABP and IL-6 as markers of chronic kidney damage in children after hemolytic uremic syndrome // Adv Clin Exp Med. 2018. Vol. 27, N 7. P. 955–962. doi: 10.17219/acem/70567

[61]

Kamijo-Ikemori A, Sugaya T, Ichikawa D, et al. Urinary liver type fatty acid binding protein in diabetic nephropathy. Clin Chim Acta. 2013;424:104–108. doi: 10.1016/j.cca.2013.05.020

[62]

Kamijo-Ikemori A., Sugaya T., Ichikawa D., et al. Urinary liver type fatty acid binding protein in diabetic nephropathy // Clin Chim Acta. 2013. Vol. 424. P. 104–108. doi: 10.1016/j.cca.2013.05.020

[63]

Novak R, Salai G, Hrkac S, et al. Revisiting the Role of NAG across the continuum of kidney disease. Bioengineering. 2023;10(4):444. doi: 10.3390/bioengineering10040444

[64]

Novak R., Salai G., Hrkac S., et al. Revisiting the Role of NAG across the continuum of kidney disease // Bioengineering. 2023. Vol. 10, N 4. ID 444. doi: 10.3390/bioengineering10040444

[65]

Bíró E, Szegedi I, Kiss C, et al. The role of urinary N-acetyl-β-D-glucosaminidase in early detection of acute kidney injury among pediatric patients with neoplastic disorders in a retrospective study. BMC Pediatr. 2022;22(1):429. doi: 10.1186/s12887-022-03416-w

[66]

Bíró E., Szegedi I., Kiss C., et al. The role of urinary N-acetyl-β-D-glucosaminidase in early detection of acute kidney injury among pediatric patients with neoplastic disorders in a retrospective study // BMC Pediatr. 2022. Vol. 22, N 1. ID 429. doi: 10.1186/s12887-022-03416-w

[67]

Shu K-H, Wang C-H, Wu C-H, et al. Urinary π-glutathione S-transferase predicts advanced acute kidney injury following cardiovascular surgery. Sci Rep. 2016;6:26335. doi: 10.1038/srep26335

[68]

Shu K.-H., Wang C.-H., Wu C.-H., et al. Urinary π-glutathione S-transferase predicts advanced acute kidney injury following cardiovascular surgery // Sci Rep. 2016. Vol. 6. ID 26335. doi: 10.1038/srep26335

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (284KB)

80

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/