Major predictive risk factors for а cytokine storm in COVID-19 patients (a retrospective clinical trials)

Anna Yu. Anisenkova , Svetlana V. Apalko , Zakhar P. Asaulenko , Alexander N. Bogdanov , Dmitry A. Vologzhanin , Evgenii Y. Garbuzov , Oleg S. Glotov , Tatyana A. Kamilova , Olga A. Klitsenko , Evdokiia M. Minina , Sergei V. Mosenko , Dmitry N. Khobotnikov , Sergey G. Sсherbak

Journal of Clinical Practice ›› 2021, Vol. 12 ›› Issue (1) : 5 -15.

PDF (938KB)
Journal of Clinical Practice ›› 2021, Vol. 12 ›› Issue (1) : 5 -15. DOI: 10.17816/clinpract63552
Original Study Articles
research-article

Major predictive risk factors for а cytokine storm in COVID-19 patients (a retrospective clinical trials)

Author information +
History +
PDF (938KB)

Abstract

Background: According to WHO, as of March 31, 2021, 127 877 462 confirmed cases of the new COVID-19 coronavirus infection were registered in the world, including 2 796 561 deaths (WHO Coronavirus Disease). COVID-19 is characterized by a wide range of clinical manifestations, from asymptomatic to a rapid progression to severe and extremely severe. Predictive biomarkers for the early detection of high-risk individuals have become a matter of great medical urgency. Aims: Search for the predictors of a cytokine storm in patients with COVID-19 infection and creation of a risk scale of this complication for practical applications. Methods: The study included 458 patients with confirmed COVID-19 infection with signs of viral lung lesions according to the computer tomography data. The patients were divided into 2 groups: those with a stable course of moderate severity (100 patients) and those with progressive moderate, severe and extremely severe course (358 patients). Results: It has been established that the main risk factors for the development of a cytokine storm in COVID-19 patients are the following: interleukin-6 concentration >23 pg/ ml, dynamics of the index on the NEWS scale ≥0, ferritin concentration >485 ng/ml, D-dimer concentration >2.1, C-reactive protein concentration >50 mg/l, number of lymphocytes in the blood <0.72×109/l, age ≥40 years. The cytokine storm incidence correlates with an increase in the number of risk factors. For the practical testing the scale was applied in 3 groups. In patients of the first group (0–1 factor) almost no cytokine storm risk was found, in the second group (2 -3 factors) the probability of the storm was 55% (increase by 35.5 times), in the third group (≥4 risk factors) it reached 96% (increase by 718 times). Conclusion: The diagnostic and monitoring criteria of a cytokine storm have been established in patients with COVID-19 infection. The developed prognostic scale allows identification of patients at high risk of developing a cytokine storm so that early anti-inflammatory therapy could be started.

Keywords

COVID-19 infection / cytokine storm / early diagnosis and monitoring

Cite this article

Download citation ▾
Anna Yu. Anisenkova, Svetlana V. Apalko, Zakhar P. Asaulenko, Alexander N. Bogdanov, Dmitry A. Vologzhanin, Evgenii Y. Garbuzov, Oleg S. Glotov, Tatyana A. Kamilova, Olga A. Klitsenko, Evdokiia M. Minina, Sergei V. Mosenko, Dmitry N. Khobotnikov, Sergey G. Sсherbak. Major predictive risk factors for а cytokine storm in COVID-19 patients (a retrospective clinical trials). Journal of Clinical Practice, 2021, 12(1): 5-15 DOI:10.17816/clinpract63552

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620–2629. doi: 10.1172/JCI137244

[2]

Wiersinga WJ, Rhodes A, Cheng AC, et al. Pathophysiology, transmission, diagnosis, and treatment of Coronavirus Disease 2019 (COVID-19): a review. JAMA. 2020;324(8):782–793. doi: 10.1016/j.jiph.2020.09.008

[3]

Caso F, Costa L, Ruscitti P, et al. Could Sars-coronavirus-2 trigger autoimmune and/or autoinflammatory mechanisms in genetically predisposed subjects? Autoimmun Rev. 2020;19(5):102524. doi: 10.1016/j.autrev.2020.102524

[4]

Zachariah P, Johnson CL, Halabi KC, et al. Epidemiology, clinical features, and disease severity in patients with coronavirus disease 2019 (COVID-19) in a children’s hospital in New York City, New York. JAMA Pediatr. 2020;174(10):e202430. doi: 10.1001/jamapediatrics.2020.2430

[5]

Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)» Версия 10 (08.02.2021). [Temporary guidelines of the Ministry of Health of the Russian Federation «Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)». Version 10 (08.02.2021). (In Russ).]

[6]

Royal College of Physicians. NEWS2 and deterioration in COVID-19. Available from: https://www.rcplondon.ac.uk/news/news2-and-deterioration-covid-19

[7]

Asafu-Adjei JK, Sampson AR. Covariate adjusted classification trees. Biostatistics. 2018;19(1):42–53. doi: 10.1093/biostatistics/kxx015

[8]

Jutzeler CR, Bourguignon L, Weis CV, et al. Comorbidities, clinical signs and symptoms, laboratory findings, imaging features, treatment strategies, and outcomes in adult and pediatric patients with COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020;37:101825. doi: 10.1016/j.tmaid.2020.101825

[9]

Профилактика инфекционных болезней. Лабораторная диагностика COVID-19. Методические рекомендации MP 3.1.0169-20 (в редакции МР 3.1.0174-20 «Изменения № 1 в МР 3.1.0170-20 «Лабораторная диагностика COVID-19», утвержденных Роспотребнадзором 30.04.2020). Государственное санитарно-эпидемиологическое нормирование Российской Федерации, 2020. [Prevention of infectious diseases. Laboratory diagnostics of COVID-19. Methodological recommendations MP 3.1.0169-20 (as amended by MP 3.1.0174-20 «Amendments No. 1 to MP 3.1.0170-20 «Laboratory diagnostics of COVID-19», approved by Rospotrebnadzor on 30.04.2020). State sanitary and epidemiological regulation of the Russian Federation; 2020. (In Russ).]

[10]

Kivela P. Paradigm shift for COVID-19 response: identifying high-risk individuals and treating inflammation. West J Emerg Med. 2020;21(3):473–476. doi: 10.5811/westjem.2020.3.47520

[11]

Caricchio R, Gallucci M, Dass C, et al. Preliminary predictive criteria for COVID-19 cytokine storm. Ann Rheum Dis. 2021;80(1):88–95. doi: 10.1136/annrheumdis-2020-218323

[12]

Moore J, June C. Cytokine release syndrome in severe COVID-19. Science. 2020;368(6490):473–474. doi: 10.1126/science.abb8925

[13]

Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clin Chem Lab Med. 2020;58(7):1131–1134. doi: 10.1515/cclm-2020-0198

Funding

бюджет СПб ГБУЗ «Городская больница № 40 Курортного административного района»budget of SPb GBUZ "City Hospital No. 40 of the Kurortny Administrative District"

RIGHTS & PERMISSIONS

Anisenkova A.Y., Apalko S.V., Asaulenko Z.P., Bogdanov A.N., Vologzhanin D.A., Garbuzov E.Y., Glotov O.S., Kamilova T.A., Klitsenko O.A., Minina E.M., Mosenko S.V., Khobotnikov D.N., Sсherbak S.G.

AI Summary AI Mindmap
PDF (938KB)

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/