The nervous system damage in COVID-19
Vladimir V. Belopasov , Yassine Yachou , Ekaterina M. Samoilova , Vladimir P. Baklaushev
Journal of Clinical Practice ›› 2020, Vol. 11 ›› Issue (2) : 60 -80.
The nervous system damage in COVID-19
Based on the available publications, the article systematizes the data on the forms of damage to the central nervous system in СOVID-19 patients. We discuss the diagnostic approaches (laboratory, instrumental and radiological) and the therapeutic tactics for different nosological forms from cranial mononeuropathies to acute inflammatory Guillain-Barré polyneuropathy and severe damage to the brain and spinal cord with acute hemorrhagic necrotizing encephalopathy and myelopathies. Pathogenetically, neurological disorders in COVID-19 can be caused by a “cytokine storm”, hypoxemia, homeostasis disorders (encephalopathy of critical illness), neurotropic and neurovirulence features of SARS-CoV-2 (isolated damage to the cranial nerves, focal and diffuse lesions of the central nervous system), and mixed effects of these factors. COVID-19 affects the course of chronic neurological diseases, especially related with neuroimmune disorders. All of the above determines the need for a multidisciplinary approach to the treatment of COVID-19 and its complications with the mandatory participation of a neurologist.
new coronavirus disease / COVID-19 / SARS-CoV-2 / viral damage of brain and spinal cord / viral meningoencephalitis / critical illness encephalopathy
| [1] |
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):1–9. doi: 10.1001/jamaneurol.2020.1127. |
| [2] |
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5. |
| [3] |
Dalakas MC. Guillain-Barré syndrome: The first documented COVID-19-triggered autoimmu-ne neurologic disease: More to come with myositis in the offing. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e781. doi: 10.1212/NXI.0000000000000781. |
| [4] |
Sellner J, Taba P, Öztürk S, Helbok R. The need for neurologists in the care of COVID-19 patients. Eur J Neurol. 2020;10.1111/ene.14257. doi: 10.1111/ene.14257. |
| [5] |
Jin M, Tong Q. Rhabdomyolysis as potential late complication associated with COVID-19. Emerg Infect Dis. 2020;26(7):1618–1620. doi: 10.3201/eid2607.200445. |
| [6] |
Román GC, Spencer PS, Reis J, et al. The neurology of COVID-19 revisited: a proposal from the environmental neurology specialty group of the world federation of neurology to implement international neurological registries. J Neurol Sci. 2020;414:116884. doi: 10.1016/j.jns.2020.116884. |
| [7] |
Sepehrinezhad A, Shahbazi A, Negah SS. COVID-19 virus may have neuroinvasive potential and cause neurological complications: a perspective review. J Neurovirol. 2020;26(3):324-329. doi: 10.1007/s13365-020-00851-2. |
| [8] |
Robinson CP, Busl KM. Neurologic manifestations of severe respiratory viral contagions. Crit Care Explor. 2020;2(4):e0107. doi: 10.1097/CCE.0000000000000107. |
| [9] |
Vonck K, Garrez I, De Herdt V, et al. Neurological manifestations and neuroinvasive mechanisms of the severe acute respiratory syndrome Coronavirus Type 2. Eur J Neurol. 2020;10.1111/ene.14329. doi: 10.1111/ene.14329. |
| [10] |
Tsai ST, Lu MK, San S, Tsai CH. The Neurologic Manifestations of Coronavirus Disea-se 2019 Pandemic: A Systemic Review. Front Neurol. 2020;11:498. doi: 10.33 9/fneur.2020.00 498. |
| [11] |
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi: 10.1056/NEJMoa2002032. |
| [12] |
Giacomelli A, Pezzati L, Conti F, et al. Self-reported olfactory and taste disorders in SARS-CoV-2 patients: a cross sectional study. Clin Infect Dis. 2020;ciaa330. doi: https://doi.org/10.1093/cid/ciaa330. |
| [13] |
Liguori C, Pierantozzi M, Spanetta M, et al. Subjective neurological symptoms frequently occur in patients with SARS-CoV2 infection. Brain Behav Immun. 2020;S0889-1591(20)30876-X. doi: 10.1016/j.bbi.2020.05.037. |
| [14] |
Rogers JP, Chesney E, Oliver D, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020;7(7):611–627. doi: 10.1016/S2215-0366(20)30203-0. |
| [15] |
Мосолов С.Н. Проблемы психического здоровья в условиях пандемии COVID-19 // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2020. — Т.120. — №5. — С. 7–15. [Mosolov SN. Problemy psikhicheskogo zdorov’ya v usloviyakh pandemii COVID-19. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(5):7–15. (In Russ).] https://doi.org/10.17116/jnevro20201200517 |
| [16] |
Troyer EA, Kohn JN, Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav Immun. 2020;87:34–39. doi: 10.1016/j.bbi.2020.04.027. |
| [17] |
Galea S, N. The mental health consequences of COVID-19 and physical distancing. The need for prevention and early intervention. JAMA Intern Med. 2020. doi: 10.1001/jamainternmed.2020.1562. |
| [18] |
Colizzi M, Bortoletto R, Silvestri M, Mondin F. Medically unexplained symptoms in the times of Covid-19 pandemic: A case-report. Brain Behav Immun Health. 2020;5:100073. doi: 10.1016/ j.bbih.2020.100073. |
| [19] |
Asadi-Pooya AA, Simani L.Central nervous system manifestations of COVID-19: A systematic review. J Neurol Sci. 2020;413:116832. doi: 10.1016/j.jns.2020.116832. |
| [20] |
Ahmad I, Rathore FA. Neurological manifestations and complications of COVID-19: A literatu-re review. J Clin Neurosci. 2020;77:8–12. doi: 10.1016/j.jocn.2020.05.017. |
| [21] |
Li Y, Wang M, Zhou Y, et al. Acute cerebrovascular disease following COVID-19: a single, retrospective, observational study. Lancet. 2020. doi: 10.2139/ssrn.3550025. |
| [22] |
Mahammedi A, Saba L, Vagal A, et al. Imaging in neurological disease of hospitalized COVID-19 patients. An Italian multicenter retrospective observational study. Radiology. 2020:201933. doi: 10.1148/radiol.2020201933. |
| [23] |
Guillan M, Villacieros-Alvarez J, Bellido S, Perez-Jorge Peremarch C. et al. Unusual simultaneous cerebral infarcts in multiple arterial territories in a COVID-19 patient. J.Thromb Res. 2020 Jun 9;193:107-109. doi: 10.1016/j.thromres.2020.06.015 |
| [24] |
Lu L, Xiong W, Liu D, Liu J. et al. Newonset acute symptomatic seizure and risk in Coronavirus Diseases 2019: A retrospective multicenter study. Epilepsia. 2020;61(6):e49–e53. doi: 10.1111/ epi.16524. |
| [25] |
Le Guennec L, Devianne J, Jalin L, Cao A, Galanaud D, Navarro V, Boutolleau D, Rohaut B, Weiss N, Demeret S. Orbitofrontal involvement in a neuroCOVID-19 patient. Epilepsia. 2020. doi: 10.1111/epi.16612. |
| [26] |
Fasano A, Cavallieri F, Canali E, Valzania F. First motor seizure as presenting symptom of SARS-CoV-2 infection. Neurol Sci. 2020:1-3. doi: 10.1007/s10072-020-04460. |
| [27] |
Zubair AS, McAlpine LS, Gardin T, et al. Neuropathogenesis and neurologic manifestations of the Coronaviruses in the age of Coronavirus disease 2019: A review. JAMA Neurol. 2020. doi: 10.1001/jamaneurol.2020.2065. |
| [28] |
Elgamasy S, Kamel MG, Ghozy S, et al. First case of focal epilepsy associated with sars-coronavirus-2. J Med Virol. 2020;10.1002/jmv.26113. doi: 10.1002/jmv.26113. |
| [29] |
Hepburn M, Mullaguri N, George P, et al. Acute symptomatic seizures in critically Ill patients with COVID-19: Is there an association? Neurocrit Care. 2020;1–5. doi: 10.1007/s12028-020-01006-1. |
| [30] |
Kuroda N. Epilepsy and COVID-19: Associations and important considerations. Epilepsy Behav. 2020;108:107122. doi: 10.1016/j.yebeh.2020.107122. |
| [31] |
Карлов В.А., Бурд С.Г., Лебедева А.В., и др. Эпилепсия и COVID-19. Тактика и лечение. Рекомендации Российской противоэпилептической лиги // Эпилепсия и пароксизмальные состояния. — 2020. — Т.12. — №1. — С. 84–88. [Karlov VA, Burd SG, Lebedeva AV, et al. Epilepsy and COVID-19. Tactic and treatment. Recommendations of Russian League Against Epilepsy. Epilepsy and paroxysmal conditions. 2020;12(1):84–88. (In Russ).] doi: 10.17749/2077-8333.2020.12.1.84-88. |
| [32] |
Karimi N, Sharifi Razavi A, Rouhani N. Frequent convulsive seizures in an adult patient with COVID-19: A case report. Iran Red Crescent Med J. 2020;22(3):e102828. doi: 10.5812/ircmj.102828. |
| [33] |
Холин A.A., Заваденко Н.Н., Холина Е.A. Международные рекомендации по ведению пациентов с эпилепсией в условиях пандемии COVID-19 (по материалам ILAE) // РМЖ. Неврология. — 2020. — №8. — С. 2–4. [Kholin AA, Zavadenko NN, Kholina EA. Mezhdunarodnyye rekomendatsii po vedeniyu patsiyentov s epilepsiyey v usloviyakh pandemii COVID-19 (po materialam ILAE). Russian Medical Journal. 2020;(8):2–4. (In Russ).] |
| [34] |
Moriguchi T, Harii N, Goto J, et al. A first case of menin-getis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:55–58. doi: 10.1016/j.ijid.2020.03.062. |
| [35] |
Ye M, Ren Y, Lv T. Encephalitis as a clinical manifestation of COVID-19. Brain Behav Immun. 2020;S0889-1591(20)30465-7. doi: 10.1016/j.bbi.2020.04.017. |
| [36] |
Bernard-Valnet R, Pizzarotti B, Anichini A, et al. Two patients with acute meningoencephalitis concomitant to SARS-CoV-2 infection. Eur J Neurol. 2020;10.1111/ene. doi: 10.1111/ene.14298. |
| [37] |
Dogan L, Kaya D, Sarikaya T, et al. Plasmapheresis treatment in COVID-19-related autoimmune meningoencephalitis: case series. Brain Behav Immun. 2020;87:155–158. doi: 10.1016/j.bbi.2020.05.022. |
| [38] |
Duong L, Xu P, Liu A. Meningoencephalitis without respiratory failure in a young female patient with COVID-19 infection in downtown Los Angeles, early april 2020. Brain Behav Immun. 2020;7:33. doi: 10.1016/j.bbi.2020.04.024. |
| [39] |
Lovati C, Osio M, Pantoni L. Diagnosing Herpes simplex-1 Encephalitis at the Time of COVID-19 pandemic. Neurol Sci. 2020;41(6):1361–1364. doi: 10.1007/s10072-020-04461-y. |
| [40] |
Lu X, Zhang L, Du H, et al. SARS-CoV-2 infection in children. N Engl J Med. 2020:382(17):1663–1665. doi: 10.1056/NEJMc2005073. |
| [41] |
McAbee GN, Brosqol Y, Pavlakis S, et al. Encephalitis assоciated with COVID-19 infection in 11 year-old child. Pediatric Neurology. 2020. doi: 10.1016/j.pediatrneurol.2020.04.013. |
| [42] |
Perchetti GA, Nalla AK, Huang M-L, et al.Validation of SARS-CoV-2 detection across multiple specimen types. J Clin Virol. 2020;128:104438. doi: 10.1016/j.jcv.2020.104438. |
| [43] |
Al-Olama M, Rashid A, Garozzo D. COVID-19-associated Meningoencephalitis complicated with intracranial hemorrhage: a case report. Acta Neurochir (Wien). 2020;162(7):1495–1499. doi: 10.1007/s00701-020-04402-w. |
| [44] |
Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415–424. doi: 10.1084/jem.20050828. |
| [45] |
Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other Coronaviruses. Brain Behav Immun. 2020;87:18–22. doi: 10.1016/j.bbi.2020.03.031. |
| [46] |
Hung EC, Chim SS, Chan PK, et al. Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin Chem. 2003;49(12):2108–2109. doi: 10.1373/clinchem.2003.025437. |
| [47] |
Zhang QL, Ding YQ, Hou JL, et al. Detection of severe acute respiratory syndrome (SARS)-associated coronavirus RNA in autopsy tissues with in situ hybridization. Di Yi Jun Yi Da Xue Xue Bao. 2003;23(11):1125–1127. |
| [48] |
Pilotto A, Odolini S, Masciocchi SS, et al. Steroid-responsive Encephalitis in Covid-19 disease. Ann Neurol. 2020;10.1002/ana.25783. doi: 10.1002/ana.25783. |
| [49] |
Arbour N, Day R, Newcombe J, Talbot PJ. Neuroinvasion by human respiratory Coronaviruses. J Virol. 2000;74(19):8913–8921. doi: 10.1128/jvi.74.19.8913-8921.2000. |
| [50] |
Lau K-K, Yu W-C, Chu C-M, et al. Possible central nervous system infection by SARS coronavirus. Emerg Infect Dis. 2004;10(2):342–344. doi: 10.3201/eid1002.030638. |
| [51] |
Tsai LK, Hsieh ST, Chang YC. Neurological manifestations in severe acute respiratory syndrome. Acta Neurol Taiwan. 2005;14(3):113–119. |
| [52] |
Panariello A, Bassetti R, Radice A, et al. Anti-NMDA receptor encepha-litis in a psychiatric Covid-19 patient: a case report. Brain Behav Immun. 2020;87:179–181. doi: 10.1016/j.bbi.2020.05.054. |
| [53] |
Yashavantha Rao HC, Jayabaskaran C. The emergence of a novel Coronavirus (SARS-CoV-2) disease and their neuroinvasive propensity may affect in COVID-19 patients. J Med Virol. 2020;92(7):786–790. doi: 10.1002/jmv.25918. |
| [54] |
Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0. |
| [55] |
Hoshino A, Saitoh M, Oka A, et al. Epidemiology of acute ence-phalopathy in japan, with emphasis on the association of viruses and syndromes. Brain Dev. 2012;34(5):337–343. doi: 10.1016/j.braindev.2011.07.012. |
| [56] |
Bohmwald K, Galvez N, Ríos M, Kalergis AM. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci. 2018;12:386. doi: 10.3389/fncel.2018.00386. |
| [57] |
Чучин М.Ю. Острая некротическая энцефалопатия при вирусной инфекции // Детская больница. — 2012. — №1. — С. 23–28. [Chuchin MYu. Acute necrotizing encephalopathy after viral infection. Detskaya bol’nitsa. 2012;(1):23–28. (In Russ).] |
| [58] |
Mizuguchi M, Yamanouchi H, Ichiyama T, Shiomi M. Acute encephalopathy associated with influenza and otherviral infections. Acta Neurol Scand. 2007;115(4Suppl):45–56. doi: 10.1111/1600-0404.2007.00809.x. |
| [59] |
Araujo R, Gouveia P, Fineza I. Bilateral thalamic lesions in acute necrotizing encepha-lopathy due to H1N1 infection visual diagnosis. Pediatr Neurol. 2016;65:96–97. doi: 10.1016/j.pediatrneurol.2016.08.008. |
| [60] |
Meijer WJ, Linn FH, Wensing AM, et al. Acute influenza virus-associated encephalitis and encephalopathy in adults: a challenging diagnosis. JMM Case Reports. 2016;3(6):e005076. doi: 10.1099/jmmcr.0.005076. |
| [61] |
Иванова Г.П. Лейкоэнцефалиты у детей: дифференциально-диагностические, патогенетические и терапевтические аспекты: Автореф. дис. … докт. мед. наук. — СПб., 2012. — 44 с. [Ivanova GP. Leykoentsefality u detey: differentsial’no-diagnosticheskiye, patogeneticheskiye i terapevticheskiye aspekty. [dissertation abstract] Saint Petersburg; 2012. 44 р. (In Russ).] Доступно по: https://search.rsl.ru/ru/record/01005012368. Ссылка активна на 14.02.2020. |
| [62] |
Desforges M, Le Coupanec A, Dubeau P, et al. Human Coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses. 2019;12(1):14. doi: 10.3390/v12010014. |
| [63] |
Das G, Mukherjee N, Ghosh S. Neurological insights of COVID-19 pandemic. ACS Chem Neurosci. 2020:11(9):1206–1209. doi: 10.1021/acschemneuro.0c00201. |
| [64] |
Dixon L, Varley J, Gontsarova A, Mallon D, et al. COVID-19-related acute necrotizing encephalopathy with brain stem involvement in a patient with aplastic anemia. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e789. doi: 10.1212/NXI.0000000000000789. |
| [65] |
Cardona GC, Quintana Pájaro LD, Quintero Marzola GC, et al. Neurotropism of SARS-CoV 2: mechanisms and manifestations. J Neurol Sci. 2020;412:116824. doi: 10.1016/j.jns.2020.116824. |
| [66] |
Radmanesh A, Derman A, Lui YW, et al. COVID-19-associated diffuse leukoencephalopathy and microhemorrhages. Radiology. 2020;202040. doi: 10.11-48/radiol.2020202040. |
| [67] |
Kandemirli SG, Dogan L, Sarikaya ZT, et al. Brain MRI findings in patients in the intensive care unit with COVID-19 infection. Radiology. 2020;201697. doi: 10.1148/radiol.2020201697. |
| [68] |
Novi G, Rossi T, Pedemonte E, et al. Acute disseminated encephalomyelitis after SARS-CoV-2 infection. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e797. doi: 10.1212/NXI.0000000000000797. |
| [69] |
Parsons T, Banks S, Bae C, et al. COVID-19-associated Acute Disseminated Encephalomyelitis (ADEM). J Neurol. 2020;1–4. doi: 10.1007/s00415-020-09951-9. |
| [70] |
Reichard RR, Kashani KB, Boire NA, et al. Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathol. 2020;140(1):1–6. doi: 10.1007/s00401-020-02166-2. |
| [71] |
Franceschi AM, Ahmed O, Giliberto L, Castillo M. Hemorrhagic posterior reversible encephalopathy syndrome as a manifestation of COVID-19 infection. AJNR Am J Neuroradiol. 2020. doi: 10.3174/ajnr.A6595. |
| [72] |
Byrnes S, Bisen M, Syed B, et al. COVID-19 Encephalopathy masquerading as substance withdrawal. J Med Virol. 2020;10.1002/jmv.26065. doi: 10.1002/jmv.26065. |
| [73] |
Pastor J, Vega-Zelaya L, Abad EM. Specific EEG encephalopathy pattern in SARS-CoV-2 patients. J Clin Med. 2020;9(5):E1545. doi: 10.3390/jcm9051545. |
| [74] |
Poyiadji N, Shahin G, Noujaim D, et al. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020;20118. doi: 10.1148/radiol.2020201187. |
| [75] |
Цинзерлинг В.А., Чухловина М.Л. Инфекционные поражения нервной системы: вопросы этиологии, патогенеза и диагностики. Руководство для врачей. — СПб.: ЭЛБИ-СПб, 2011. — 584 с. [Tsinzerling VA, Chukhlovina ML. Infektsionnyye porazheniya nervnoy sistemy: voprosy etiologii, patogeneza i diagnostiki. Rukovodstvo dlya vrachey. Saint Petersburg: ELBI-SPb; 2011. 584 р. (In Russ).] |
| [76] |
Шмидт Т.Е. Редкие демиелинизирующие заболевания центральной нервной системы // Неврологический журнал. — 2016. — Т.21. — №5. — С. 252–264. [Shmidt TE. Rare demyelinating diseases of central nervous system. Nevrologicheskiy Zhurnal (Neurological Journal). 2016;21(5):252–264. (In Russ).] doi: 10.18821/1560-9545-2016-21-5-252-264. |
| [77] |
Radmanesh F, Rodriguez-Pla A, Pincus MD, Burns JD. Severe cerebral involvement in adult-onset hemophagocytic lymphohistiocytosis. J Clin Neurosci. 2020;76:236–237. doi: 10.1016/j.jocn.2020.04.054. |
| [78] |
Finelli PF, Uphoff DF. Magnetic resonance imaging abnormalities with septic encephalopathy. J Neurol Neurosurg Psychiatry. 2004;75(8):1189–1191. doi: 10.1136/jnnp.2003.030833. |
| [79] |
Karakike E, Giamarellos-Bourboulis EJ. Macrophage activation-like syndrome: a distinct entity leading to early death in sepsis. Front Immunol. 2019;10:55. doi: 10.3389/fimmu.2019.00055. |
| [80] |
Misra DP, Agarwal V, Gasparyan AY, Zimba O. Rheumatologists’ perspective on coronavi rus disease 19 (COVID-19) and potential therapeutic targets. Clin Rheumatol. 2020;39(7):2055–2062. doi: 10.1007/s10067-020-05073-9. |
| [81] |
Valade S, Azoulay E, Galicier L, et al. Coagulation disorders and bleedings in critically ill patients with hemophagocytic lymphohistiocytosis. Mediсine. 2015;94(40):e1692. doi: 10.1097/MD.0000000000001692. |
| [82] |
Wu P, Duan F, Luo C, et al. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol. 2020;138(5):575–578. doi: 10.1001/jama ophthalmol.2020.1291. |
| [83] |
Loon SC, Teoh SC, Oon LL, et al. The severe acute respiratory syndrome Coronavirus in tears. Br J Ophthalmol. 2004;88(7):861–863. doi: 10.1136/bjo.2003.035931. |
| [84] |
Salducci M, La Torre G. COVID-19 emergency in the cruise’s ship: a case report of conjunctivitis. Clin Ter. 2020;171(3):e189–e191. doi: 10.7417/CT.2020.2212. |
| [85] |
Баклаушев В.П., Кулемзин С.В., Горчаков А.А., и др. COVID-19. Этиология, патогенез, диагностика и лечение // Клиническая практика. — 2020. — Т.11. — №1. — С. 7–20. [Baklaushev VP, Kulemzin SV, Gorchakov АА, et al. COVID-19. Etiology, pathogenesis, diagnosis and treatment. Journal of Clinical Practice. 2020;11(1):7–20. (In Russ).] doi: 10.17816/clinpract26339. |
| [86] |
Li JО, Lam DS, Chen Y, Ting DS. Novel Coronavirus disease 2019 (COVID-19): the importance of recognising possible early ocular manifestation and using protective eyewear. Br J Ophthalmol. 2020;104(3):297–298. doi: 10.1136/bjophthalmol-2020-315994. |
| [87] |
Chen Lu, Liu M, Zhang Z, et al. Ocular manifestations of a hospitalised patient with confirmed 2019 novel coronavirus disease. Br J Ophthalmol. 2020;104(6):748–755. doi: 10.1136/bjophthalmol-2020-316304. |
| [88] |
Vassilara F, Spyridaki A, Pothitos G, et al. A rare case of human coronavirus 229E associated with acute respiratory distress syndrome in a healthy adult. Case Rep Infect Dis. 2018;2018:6796839. doi: 10.1155/2018/6796839. |
| [89] |
Zhou Y, Zeng Y, Tong Y, et al. Ophthalmologic evidence against the interpersonal trans-mission of 2019 novel coronavirus through conjunctiva. New York: medRxiv. 2020. doi: 10.1101/2020.02.11.20021956. |
| [90] |
Scalinci SZ, Trovato Battagliola E. Conjunctivitis can be the only presenting sign and symptom of COVID-19. IDCases. 2020;20:e00774. doi: 10.1016/j.idcr.2020.e00774. |
| [91] |
Cheema M, Aghazadeh H, Nazarali S, et al. Keratoconjunctivitis as the initial medical presentation of the novel coronavirus disease 2019 (COVID-19). Can J Ophthalmol. 2020;S0008-4182(20)30305-7. doi: 10.1016/j.jcjo.2020.03.003. |
| [92] |
Sadhu S, Agrawal R, Pyare R, et al. COVID-19: Limiting the risks for eye care professionals. Ocul Immunol Inflamm. 2020;1–7. doi: 10.1080/0927394-8.2020.1755-442. |
| [93] |
De Grootmijnes JD, van Dun JM, van der Most RG, de Groot RJ. Natural history of a recurrent feline coronavirus infection and the role of cellular immunity in survival and disease. J Virol. 2005;79(2):1036–1044. doi: 10.1128/JVI.79.2.1036-1044.2005. |
| [94] |
Neri P, Pichi F. COVID-19 and the eye immunity: lesson learned from the past and possible new therapeutic insights. Int Ophthalmol. 2020;40(5):1057–1060. doi: 10.1007/s10792-020-01389-2. |
| [95] |
Nakagaki K, Nakagaki K, Taguchi F. Receptor-independent spread of a highly neurotropic murine coronavirus JHMV strain from initially infected microglial cells in mixed neural cultures. J Virol. 2005;79(10):6102–6110. doi: 10.1128/JVI.79.10.6102-6110.2005. |
| [96] |
Shindler KS, Kenyon LC, Dutt M, et al. Experimental optic neuritis induced by a demyelinating strain of mouse hepatitis virus. J Virol. 2008;82(17):8882–8886. doi: 10.1128/JVI.00920-08. |
| [97] |
Bailey OT, Pappenheimer AM, Cheever FS, Daniels JB. A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin: II. Pathology. J Exp Med. 1949;90(3):195–212. doi: 10.1084/jem.90.3.195. |
| [98] |
Seah I, Agrawal R. Can the Coronavirus Disease 2019 (COVID-19) affect the eyes? A review of Coronaviruses and ocular implications in humans and animals. Ocul Immunol Inflamm. 2020;28(3):391–395. doi: 10.1080/09273948.2020.1738501. |
| [99] |
Butowt R, Bilinska K. SARS-CoV-2: olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chem Neurosci. 2020;11(9):1200–1203. doi: 10.1021/acschemneuro.0c00172. |
| [100] |
Qing H, Li Z, Yang Z, et al. The possibility of COVID-19 transmission from eye to nose. Acta Ophthalmol. 2020;98(3):e388. doi: 10.1111/aos.14412. |
| [101] |
Giacomelli A, Pezzati L, Conti F, et al. Self-reported olfactory and taste disorders in SARS-CoV-2 patients: A cross-sectional study. Clin Infect Dis. 2020;ciaa330. doi: 10.1093/cid/ciaa330. |
| [102] |
Ralli M, Di Stadio A, Greco A, et al. Defining the burden of olfactory dysfunction in COVID-19 patients. Eur Rev Med Pharmacol Sci. 2020;24(7):3440–3441. doi: 10.26355/eurrev_202004_20797. |
| [103] |
Lechien JR, Chiesa-Estomba CM, Place S, et al.; COVID-19 Task Force of YO-IFOS. Clinical and epidemiological characteristics of 1,420 European patients with mild-to-moderate Coronavirus Disease 2019. J Intern Med. 2020;10.1111/joim.13089. doi: 10.1111/joim.13089. |
| [104] |
Xydakis MS, Dehgani-Mobaraki P, Holbrook EH, et al. Smell and taste dysfunction in patients with COVID-19. Lancet Infect Dis. 2020;S1473-3099(20)30293-0. doi: 10.1016/S1473-3099(20)30293-0. |
| [105] |
Gane SB, Kelly C, Hopkins C. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology. 2020;58(3):299–301. doi: 10.4193/Rhin20.114. |
| [106] |
Hopkins C, Surda P, Kumar N. Presentation of new onset anosmia during the COVID-19 pandemic. Rhinology. 2020;58(3):295–298. doi: 10.4193/Rhin20.116. |
| [107] |
Moein ST, Hashemian SM, Mansourafshar B, et al. Smell dysfunction: a biomarker for COVID-19. Int Forum Allergy Rhinol. 2020;10.1002/alr.22587. doi: 10.1002/alr.22587. |
| [108] |
Yan CH, Faraji F, Prajapati DP, et al. Association of chemosen-sory dysfunction and Covid-19 in patients presenting with influenza-like symptoms. Int Forum Allergy Rhinol. 2020;10.1002/alr.22579. doi: 10.1002/alr.22579. |
| [109] |
Gautier J-F, Ravussin Y. A new symptom of COVID-19: loss of taste and smell. Obesity (Silver Spring). 2020;28(5):848. doi: 10.1002/oby.22809. |
| [110] |
Izquierdo-Dominguez A, Rojas-Lechuga MJ, Mullol J, Alobid I. Olfactory dysfunction in the COVID-19 outbreak. J Investig Allergol Clin Immunol. 2020. doi: 10.18176/jiaci.0567. |
| [111] |
Temmel AF, Quint C, Schickinger-Fischer B, et al. Characteristics of olfactory dis-orders in relation to major causes of olfactory loss. Arch Otolaryngol Head Neck Surg. 2002;128(6):635–641. doi: 10.1001/archotol.128.6.635. |
| [112] |
Soler ZM, Patel ZM, Turner JH, Holbrook EH. A primer on viral-associated olfactory loss in the era of COVID-19. Int Forum Allergy Rhinol. 2020;10.1002/alr.22578. doi: 10.1002/alr.22578. |
| [113] |
Lovato A, de Filippis C. Clinical presentation of COVID-19: a systematic review focusing on upper airway symptoms. Ear Nose Throat J. 2020;145561320920762. doi: 10.1177/0145561320920762. |
| [114] |
Heidari F, Karimi E, Firouzifar M, et al. Anosmia as a prominent symptom of COVID-19 infection. Rhinology. 2020;58(3):302–303. doi: 10.4193/Rhin20.140. |
| [115] |
Obiefuna S, Donohoe C. Neuroanatomy, Nucleus Gustatory. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020. |
| [116] |
Goh Y, Beh DL, Makmur A, et al. Pearls and oysters: facial nerve palsy as a neurological manifestation of Covid-19 infection. Neurology. 2020;10.1212/WNL.0000000000009863. doi: 10.1212/WNL.0000000000009863. |
| [117] |
Andorinho de Freitas Ferreira AC, Romão ТТ, Macedo YS, et al. COVID-19 and herpes zoster coinfection presenting with trigeminal neuropathy. Eur J Neurol. 2020:10.1111/ene.14361. doi: 10.1111/ene.14361. |
| [118] |
Vaira LA, Salzano G, Deiana G, De Riu G. Anosmia and ageusia: common findings in COVID-19 patients. Laryngoscope. 2020;130(7):1787. doi: 10.1002/lary.28692. |
| [119] |
Vaira LA, Deiana G, Fois AG, et al. Objective evaluation of anosmia and ageusia in COVID-19 patients: Single-center experience on 72 cases. Head Neck. 2020;42(6):1252–1258. doi: 10.1002/hed.26204. |
| [120] |
Finsterer J, Stollberger C. Causes of Hypogeusia/Hyposmia in SARS-CoV2 infected patients. J Med Virol. 2020;10.1002/jmv.25903. doi: 10.1002/jmv.25903. |
| [121] |
Wee LE, Chan YF, Teo NW, et al. The role of self-reported olfactory and gustatory dysfunction as a screening criterion for suspected COVID-19. Eur Arch Otorhinolaryngol. 2020;1–2. doi: 10.1007/s00405-020-05999-5. |
| [122] |
Ng SC, Tilg H. COVID-19 and the gastrointestinal tract: more than meets the eye. Gut. 2020;69(6):973–974. doi: 10.1136/gutjnl-2020-321195. |
| [123] |
Agarwal A, Chen A, Ravindran N, et al. Gastrointestinal and liver manifestations of COVID-19. J Clin Exp Hepatol. 2020;10(3):263–265. doi: 10.1016/j.jceh. 2020.03.001. |
| [124] |
Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med. 2020;382(10):970–971. doi: 10.1056/NEJMc2001468. |
| [125] |
Collins AM, Neurogenic Cough. Neurologic and Neurodegenerative Diseases of the Larynx. 2020. Р. 253—261. |
| [126] |
Татарников В.С. Роль ростральных вентролатеральных отделов продолговатого мозга в регуляции активности дыхательного центра: Автореф. дис. … канд. мед. наук. — Самара, 1996. — 22 с. [Tatarnikov VS. Rol’ rostral’nykh ventrolateral’nykh otdelov prodolgovatogo mozga v regulyatsii aktivnosti dykhatel’nogo tsentra. [dissertation abstract] Samara; 1996. 22 р. (In Russ).] Доступно по: https://search.rsl.ru/ru/record/01000098524. Ссылка активна на 14.02.2020. |
| [127] |
Lee I-C, Huo T-I, Huang Yi-H. Gastrointestinal and liver manifestations in patients with COVID-19. J Chin Med Assoc. 2020;10.1097/JCMA.0000000000000319. doi: 10.1097/jcma.0000000000000319. |
| [128] |
Shastin D, Nidamanuri P, Nannapaneni R. Recurrent hiccups may signal brainstem pathology and should be investigated. BMJ Case Rep. 2018;2018. pii: bcr-2017-222926. doi: 10.1136/bcr-2017-222926. |
| [129] |
Xu J, Zhong S, Liu J, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clin Infect Dis. 2005;41(8):1089–1096. doi: 10.1086/444461. |
| [130] |
Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host‐virus interaction, and proposed neurotropic mechanisms. ACS Chem Neursci. 2020;11(7):995–998. doi: 10.1021/acschemneuro.0c00122. |
| [131] |
Li Y‐C, Bai W‐Z, Hashikawa T. The neuroinvasive potential of SARS‐CoV2 may play a role in the respiratory failure of COVID‐19 patients. J Med Virol. 2020;92(6):552–555. doi: 10.1002/jmv.25728. |
| [132] |
Tassorelli C, Mojoli F, Baldanti F, et al. COVID-19: What if the brain had a role in causing the deaths? Eur J Neurol. 2020;10.1111/ene.14275. doi: 10.1111/ene.14275. |
| [133] |
McCray PB, L, C, et al. Lethal infection of K18-hACE2 Mice infected with severe acute respiratory syndrome Coronavirus. . 2007;81(2):813–821. doi: . |
| [134] |
Natoli S, Oliveira V, Calabresi P, et al. Does SARS-Cov-2 invade the brain? Translational lessons from animal models. Eur J Neurol. 2020;10.1111/ene.14277. doi: 10.1111/ene.14277. |
| [135] |
Camdessanche JP, Morel J, Pozzetto B, et al. COVID-19 may induce Guillain-Barré syndrome. Rev Neurol (Paris). 2020;176(6):516–518. doi: 10.1016/j.neurol.2020.04.003. |
| [136] |
Riva N, Russo T, Falzone YM, et al. Post-infectious Guillain-Barré syndrome related to SARS-CoV-2 infection: a case report. J Neurol. 2020;1–3. doi: 10.1007/s00415-020-09907-z. |
| [137] |
Alberti P, Beretta S, Piatti M, et al. Guillain-Barré Syndrome Related to COVID-19 Infection. Neurol Neuroimmunol Neuroinflamm. 2020;7(4):e741. doi: 10.1212/XI.0000000000000741. |
| [138] |
Toscano G, Palmerini F, Ravaglia S, et al. Guillain-Barré syndrome associated with SARS-CoV-2. N Engl J Med. 2020;382(26):2574–2576. doi: 10.1056/NEJMc2009191. |
| [139] |
Padroni M, Mastrangelo V, Asioli GM, et al. Guillain-Barré syndrome following COVID-19: new infection, old complication? J Neurol. 2020;1–3. doi: 10.1007/s00415-020-09849-6. |
| [140] |
Finsterer J, Scorza FA, Ghosh R. COVID-19 Polyradiculitis in 24 Patients Without SARS-CoV-2 in the Cerebro-Spinal Fluid. J Med Virol. 2020;10.1002/jmv.26121. doi: 10.1002/jmv.26121. |
| [141] |
Coen M, Jeanson G, Almeida LA, et al. Guillain-Barré Syndrome as a complication of SARS-CoV-2 infection. Brain Behav Immun. 2020;87:111–112. doi: 10.1016/j.bbi.2020.04.074. |
| [142] |
Lascano AM, Epiney J-B, Coen M, et al. SARS-CoV-2 and Guillain-Barré Syndrome: AIDP variant with favorable outcome. Eur J Neurol. 2020;10.1111/ene.14368. doi: 10.1111/ene.14368. |
| [143] |
Bigaut K, Mallaret M, Baloglu S, et al. Guillain-Barré syndrome related to SARS-CoV-2 infection. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e785. doi: 10.1212/NXI.0000000000000785. |
| [144] |
Assini A, Benedetti L, Di Maio S, et al. New clinical manifestation of COVID-19 related Guillain-Barrè Syndrome highly responsive to intravenous immunoglobulins: two Italian cases. Neurol Sci. 2020. doi: 10.1007/s10072-020-04484-5. |
| [145] |
Oguz-Akarsu E, Ozpar R, Mirzayev H, et al. Guillain-Barré syndrome in a patient with minimal symptoms of COVID-19 infection. Muscle Nerve. 2020;10.1002/mus.26992. doi: 10.1002/mus.26992. |
| [146] |
Sedaghat Z, Karimi N. Guillain-Barre syndrome associated with COVID-19 infection: a case report. J Clin Neurosci. 2020;76:233–235. doi: 10.1016/j.jocn.2020.04.062. |
| [147] |
El Otmani H, El Moutawakil B, Rafai MA, et al. Covid-19 and Guillain-Barré syndrome: more than a coincidence! Rev Neurol (Paris). 2020;176(6):518–519. doi: 10.1016/j.neurol.2020.04.007. |
| [148] |
Su XW, Palka SV, Rao RR, et al. SARS-CoV-2-associated Guillain-Barré syndrome with dysautonomia. Muscle Nerve. 2020;10.1002/mus.26988. doi: 10.1002/mus.26988. |
| [149] |
Turgay C, Emine T, Ozlem K, et al. A rare cause of acute flaccid paralysis: human coronaviruses. J Pediatr Neurosci. 2015;10(3):280–281. doi: 10.4103/1817-1745.165716. |
| [150] |
Kim JE, Heo JH, Kim HO, et al. Neurological complications during treatment of Middle East respiratory syndrome. J Clin Neurol. 2017;13(3):227–233. doi: 10.3988/jcn.2017.13.3.227. |
| [151] |
Gigli GL, Bax F, Marini A, et al. Guillain-Barré syndrome in the COVID-19 era: just an occasional cluster? J Neurol. 2020;1–3. doi: 10.1007/s00415-020-09911-3. |
| [152] |
Gupta A, Paliwal VK, Garg RK. Is COVID-19-related Guillain-Barré syndrome different? Brain Behav Immun. 2020;87:177–178. doi: 10.1016/j.bbi.2020.05.051. |
| [153] |
Sancho-Saldaña A, Lambea-Gil Á, Capablo Liesa JL, et al. Guillain-Barré syndrome associated with leptomeningeal enhancement following SARS-CoV-2 infection. Clin Med (Lond). 2020;clinmed.2020-0213. doi: 10.7861/clinmed.2020-0213. |
| [154] |
Chan JL, Ebadi H, Sarna JR. Guillain-Barré syndrome with facial diplegia related to SARS-CoV-2 infection. Can J Neurol Sci. 2020;1–10. doi: 10.1017/cjn.2020.106. |
| [155] |
Caamaño DS, Beato AR. Facial diplegia, a possible atypical variant of Guillain-Barré Syndrome as a rare neurological complication of SARS-CoV-2. J Clin Neurosci. 2020;77:230–232. doi: 10.1016/j.jocn.2020.05.016. |
| [156] |
Helbok R, Beer R, Löscher W, et al. Guillain-Barré syndrome in a patient with antibodies against SARS-COV-2. Eur J Neurol. 2020. doi: 10.1111/ene.14388. |
| [157] |
Scoppetta C, Di Gennaro G, Polverino F. Editorial – High dose intravenous immunoglobulins as a therapeutic option for COVID-19 patients. Eur Rev Med Pharmacol Sci. 2020;24(9):5178–5179. doi: 10.26355/eurrev_202005_21214. |
| [158] |
Gutiérrez-Ortiz C, Méndez A, Rodrigo-Rey S, et al. Miller fisher syndrome and polyneuritis Cranialis in COVID-19. Neurology. 2020;10.1212/WNL.0000000000009619. doi: 10.1212/WNL.0000000000009619. |
| [159] |
Lantos JE, Strauss SB, Lin E. COVID-19-associated miller fisher syndrome: MRI findings. AJNR Am J Neuroradiol. 2020. doi: 10.3174 /ajnr.A6609. |
| [160] |
Dinkin M, Gao V, Kahan J, et al. COVID-19 presenting with ophthalmoparesis from cranial nerve palsy. Neurology. 2020;10.1212/WNL.0000000000009700. doi: 10.1212/WNL.0000000000009700. |
| [161] |
Wei H, Yin H, Huang M, Guo Z. The 2019 novel cornoavirus pneumonia with onset of oculomotor nerve palsy: a case study. J Neurol. 2020;267(5):1550–1553. doi: 10.1007/s00415-020-09773-9. |
| [162] |
Pérez Álvarez ÁI, Suárez Cuervo C, Fernández Menéndez S. [Infección por SARS-CoV-2 asociada a diplopía y anticuerpos antirreceptor de acetilcolina. (In English, Spanish)]. Neurología. 2020,35(4):264–265. doi: 10.1016/j.nrl.2020.04.003. |
| [163] |
Anand P, Slama MC, Kaku M, et al. COVID-19 in patients with myasthenia gravis. Muscle Nerve. 2020;10.1002/mus.26918. doi: 10.1002/mus.26918. |
| [164] |
Guidon AC, Amato AA. COVID-19 and neuromuscular disorders. Neurology. 2020;94(22):959–969. doi: 10.1212/WNL.0000000000009566. |
| [165] |
Jacob S, Muppidi S, Guidon A, et al; International MG/COVID-19 Working Group. Guidance for the management of myasthenia gravis (MG) and Lambert-Eaton myasthenic syndrome (LEMS) during the COVID-19 pandemic. J Neurol Sci. 2020;412:116803. doi: 10.1016/j.jns.2020.116803. |
| [166] |
Delly F, Syed MJ, Lisak RP, Zutshi D. Myasthenic crisis in COVID-19. J Neurol Sci. 2020;414:116888. doi: 10.1016/j.jns.2020.116888. |
| [167] |
Ramaswamy SB, Govindarajan R. COVID-19 in Refractory Myasthenia Gravis - A Case Report of Successful Outcome. J Neuromuscul Dis. 2020;7(3):361-364. doi: 10.3233/JND – 200520. |
| [168] |
Wong PF, Craik S, Newman P, et al. Lessons of the month 1: a case of rhombencephalitis as a rare complication of acute COVID-19 infection. Clin Med (Lond). 2020. pii: clinmed.2020-0182. doi: 10.7861/clinmed.2020-0182. |
| [169] |
Cuneo GL, Grazzini I, Guadagni M, et al. An atypical Bickerstaff’s brainstem encephalitis with involvement of spinal cord. Neuroradiol J. 2016;29(5):396–399. doi: 10.1177/197140091666 5383. |
| [170] |
Муртазина А.Ф., Наумова Е.С., Никитин С.С., и др. Стволовой энцефалит Бикерстаффа, острый поперечный миелит и острая моторная аксональная нейропатия: сложности диагностики и лечения пациентов с перекрестными синдромами. Клиническое наблюдение // Нервно-мышечные болезни. — 2017. — Т.7. — №3. — С. 56–62. [Murtazina AF, Naumova ES, Nikitin SS, et al. Bickerstaff brainstem encephalitis, acute transverse myelitis, and acute motor axonal neuropathy: diagnostic and treatment challenges in patients with concomitant syndromes. Clinical observation. Neuromuscular Diseases. 2017;7(3):56–62. (In Russ).] doi: 10.17650/2222-8721-2017-7-3-56-62. |
| [171] |
Sotoca J, Rodríguez-Álvarez Y. COVID-19-associated acute necrotizing myelitis. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e803. doi: 10.1212/NXI.0000000000000803. |
| [172] |
Гусев Е.И., Мартынов М.Ю., Бойко А.Н., и др. Новая коронавирусная инфекция (COVID-19) и поражение нервной системы: механизмы неврологических расстройств, клинические проявления, организация неврологической помощи // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2020. — Т.120. — №6. — С. 7–16. [Gusev EI, Martynov MYu, Boyko AN, et al. Novaya koronavirusnaya infektsiya (COVID-19) i porazheniye nervnoy sistemy: mekhanizmy nevrologicheskikh rasstroystv, klinicheskiye proyavleniya, organizatsiya nevrologicheskoy pomoshchi. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(6):7–16. (In Russ).] doi: 10.17116/ jnevro20201200617. https://doi.org/10.17116/jnevro20201200617 |
| [173] |
Анестезиолого-реанимационное обеспечение пациентов с новой коронавирусной инфекцией COVID-19. Федерация анестезиологов и реаниматологов. Методические рекомендации. — М., 2020. — 183 с. [Anesteziologo-reanimatsionnoye obespecheniye patsiyentov s novoy koronavirusnoy infektsiyey COVID-19. Federatsiya anesteziologov i reanimatologov. Metodicheskiye rekomendatsii. Moscow; 2020. 183 p. (In Russ).] |
| [174] |
Lai C-C, Liu YH, Wang C-Yi, et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): facts and myths. J Microbiol Immunol Infect. 2020;53(3):404–412. doi: 10.1016/j.jmii.2020.02.012. |
| [175] |
Varga Z, Flammer AJ, Steiger P, et al. Endotehelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. doi: 10.1016/S0140-6736 (20)30937-5. |
| [176] |
Morassi M, Bagatto D, Cobelli M, et al. Stroke in patients with SARS-CoV-2 infection: case series. J Neurol. 2020;1–8. doi: 10.1007/s00415-020-09885-2. |
| [177] |
Inciardi RM, Lupi L, Zaccone G, et al. Cardiac involvement in a patient with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020. doi: 10.1001/jama-cardio.2020.1096. |
| [178] |
Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020:e201017.doi: 10.1001/jamacardio.2020.1017. |
| [179] |
Qureshi AI, Abd-Allah F, Alsenani F, et al. Management of acute ischemic stroke in patients with COVID-19 infection: Report of an international panel. Int J Stroke. 2020;1747493020923234. doi: 10.1177/1747493020923234. |
| [180] |
Pranata R, Huang I, Lukito AA, Raharjo SB. Elevated N-terminal Pro-Brain natriuretic peptide is associated with increased mortality in patients with COVID-19: systematic review and meta-analysis. Postgrad Med J. 2020;96(1137):387–391. doi: 10.1136/postgradmedj-2020-137884. |
| [181] |
Tu WJ, Cao J, Yu L, et al. Clinicolaboratory study of 25 fatal cases of COVID-19 in Wuhan. Intensive Care Med. 2020;46(6):1117–1120. doi: 10.1007/s00134-020-06023-4. |
| [182] |
Madjid M, Safavi‐Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020. doi: 10.1001/jamacardio.2020.1286. |
| [183] |
Akhmerov A, Marban E. COVID-19 and the heart. Circ Res. 2020;126(10):1443–1455. doi: 10.1161/CIRCRES AHA.120.317055. |
| [184] |
Aggarwal G, Lippi G, Henry BM. Cerebrovascular disease is associated with an increased disease severity in patients with Coronavirus Disease 2019 (COVID-19): a pooled analysis of published literature. Int J Stroke. 2020;15(4):385–389. doi: 10.1177/1747493020921664. |
| [185] |
Hess DC, Eldahshan W, Rutkowski E. COVID-19-related stroke. Transl Stroke Res. 2020;11(3):322–325. doi: 10.1007/s12975-020-00818-9. |
| [186] |
Young K. COVID-19: Stroke in Young Adults/New Presentation in Kids/ACS Advissions. N Engl J Med. 2020. doi: 10.1056/NEYMc2009787. |
| [187] |
Jin H., Hong C., Chen S., Zhou Y , Wang Y. et al. Consensus for Prevention and Management of Coronavirus Disease 2019 (COVID-19) for Neurologists. Stroke Vasc. Neurol., 2020; svn-2020-0003-82. doi:10.1136/svn-2020-000382. |
| [188] |
Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9–14. doi: 10.1016/j.thromres.2020.04.024. |
| [189] |
Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi: 10.1056/NEJMc2007575. |
| [190] |
Bernstein L, Stead Sellers F. Patients with heart attacks, strokes and even appendicitis vanish from hospitals. 2020. Available from: https://www.washingtonpost.com/health/patients-with-heart-attacks-strokes-and-even-appendicitis-vanish-from-hospitals/2020/04/19/9ca3ef24-7eb4-11ea-9040-68981f488eed_story.html. |
| [191] |
Cavalcanti DD, Raz E, Shapiro M, et al. Cerebral venous thrombosis associated with COVID-19. AJNR Am J Neuroradiol. 2020. doi: 10.3174/ajnr.A6644. |
| [192] |
Hughes C, Nichols T, Pike А, et al. Cerebral venous sinus thrombosis as a presentation of COVID-19. Eur J Case Rep Intern Med. 2020;7(5):001691. doi: 10.12890/2020_001691. |
| [193] |
Poillon G, Obadia M, Perrin M, et al. Cerebral venous thrombosis associated with COVID-19 infection: causality or coincidence? J Neuroradiol. 2020;S0150-9861(20)30167-X. doi: 10.1016/j.neu-rad.2020.05.003. |
| [194] |
Avula A, Nalleballe K, Narula N, et al. COVID-19 presenting as stroke. Brain Behav Immun. 2020;87:115–119. doi: 10.1016/j.bbi.2020.04.077. |
| [195] |
Violi F, Pastori D, Cangemi R, et al. Hypercoagulation and antithrom-botic treatment in Coronavirus 2019: a new challenge. Thromb Haemost. 2020;120(6):949–956. doi: 10.1055/s-0040-1710317. |
| [196] |
Zhao J, Rudd A, Liu R. Challenges and potential solutions of stroke care during the Coronavirus disease 2019 (COVID-19) outbreak. Stroke. 2020;51(5):1356–1357. doi: 10.1161/STROKEAHA.120.029701. |
| [197] |
Oxley TJ, Mocco J, Majidi S, et al. Large-Vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med. 2020;382(20):e60. doi: 10.1056/NEJMc2009787. |
| [198] |
Siniscalchi A, Gallelli L. Could COVID-19 represent a negative prognostic factor in patients with stroke? Infect Control Hosp Epidemiol. 2020;1. doi: 10.1017/ice.2020.146. |
| [199] |
Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020;382(23):2268–2270. doi: 10.1056/NEJMc2008597. |
| [200] |
Dafer RM, Osteraas ND, Biller J. Acute stroke care in the Coronavirus disease 2019 pandemic. J Stroke Cerebrovasc Dis. 2020;29(7):10488. doi: 16/j.jstrokecerebrovasdis.2020.104881. |
| [201] |
Leira EC, Russman AN, Biller J, et al. Preserving stroke care during the COVID-19 pandemic: potential issues and solutions. Neurology. 2020;10.1212/WNL.00000-00000009713. doi: 10.1212/WNL.0000000000009713. |
| [202] |
Tsivgoulis G, Palaiodimou L, Katsanos AH, et al. Neurological manifestations and implications of COVID-19 pandemic. Ther Adv Neurol Disord. 2020;13:1756286420932036. doi: 10.1177/1756286420932036 |
| [203] |
Smith MS, Bonomo J, Knight 4th WA, et al. Endovascular therapy for patients with acute ischemic stroke during the COVID-19 Pandemic: a proposed algorithm. Stroke. 2020;51(6):1902–1909. doi: 10.1161/STROKEAHA.120.029863. |
| [204] |
Fraser JF, Arthur AS, Chen M, et al. Society of neurointerventional surgery recommendations for the care of emergent neurointerventional patients in the setting of Covid-19. J Neurointerv Surg. 2020;12(6):539–541. doi: 10.1136/neu-rintsurg-2020-016098. |
| [205] |
Sharifi-Razavi A, Karimi N, Rouhani N. COVID-19 and intracerebral haemorrhage: causative or coincidental? New Microbes New Infect. 2020;35:100669. doi: 10.1016/j.nmni.2020.100669. |
| [206] |
Saiegh FA, Ghosh R, Leibold A, et al. Status of SARS-CoV-2 in cerebrospinal fluid of patients with COVID-19 and stroke. J Neurol Neurosurg Psychiatry. 2020;jnnp-2020-323522. doi: 10.1136/jnnp-2020-323522. |
| [207] |
Chougar L., Mathon B., Weiss N., Degos V., Shor N. Atypical Deep Cerebral Vein Thrombosis with Hemorrhagic Venous Infarction in a Patient Positive for COVID-19. AJNR Am J Neuroradiol. 2020. doi: 10.3174/ajnr.A6642. |
| [208] |
Herman C., Mayer K., Sarwal A. Scoping review of prevalence of neurologic comorbidities in patients hospitalized for COVID-19. Neurology., 2020; 95:1-8. doi:10.1212/WNL.0000000000 009673. |
| [209] |
Tay HS, Harwood R. Atypical presentation of COVID-19 in a frail older person. Age Ageing. 2020;afaa068. doi: 10.1093/ageing/afaa068. |
| [210] |
Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;e200950. doi: 10.1001/jamacardio.2020.0950. |
| [211] |
Potere N, Valeriani E, Candeloro M, Tana M, Porreca E. et al. Acute complications and mortality in hospitalized patients with coronavirus disease 2019: a systematic review and meta-analysis. Crit Care. 2020;24(1):389. doi: 10.1186/s13054-020-03022-1. |
| [212] |
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–448. doi: 10.1016/S2213-2600(20)30079-5. |
| [213] |
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3. |
| [214] |
La Hue SC, James TC, Newman JC, et al. W. Collaborative Delirium Prevention in the Age of COVID-19. J Am Geriatr Soc. 2020;68(5):947–949. doi: 10.1111/jgs.16480. |
| [215] |
Sanders BJ, Bakar M, Mehta S, et al. Hyperactive delirium requires more aggressive management in patients with COVID-19: temporarily rethinking “Low and Slow”. J Pain Symptom Manage. 2020: S0885-3924(20)30389-4. doi: 10.1016/j.jpainsymman.2020.05.013. |
| [216] |
Salluh JI, Wang H, Schneider EB. Outcome of delirium in critically ill patients: systematic review and meta-analysis. BMJ. 2015;350:h2538. doi: 10.1136/bmj.h2538. |
| [217] |
O’Hanlon S, Inouye SK. Delirium: a missing piece in the COVID-19 pandemic puzzle. Age Ageing. 2020:afaa094. doi: 10.1093/ageing/afaa094. |
| [218] |
Alkeridy WA, Almaghlouth I, Alrashed R, et al. A unique presentation of delirium in a patient with otherwise asymptomatic COVID-19. J Am Geriatr Soc. 2020;10.1111/jgs.16536. doi: 10.1111/jgs.16536. |
| [219] |
Kotfis K, Roberson SW, Wilson JE, et al. COVID-19: ICU delirium management during SARS-CoV-2.pandemic.Crit Care. 2020;24(1):176. doi: 10.1186/s13054-020-02882-x. |
| [220] |
Седация пациентов в отделениях анестезиологии, реанимации и интенсивной терапии. Федерация анестезиологов и реаниматологов. Методические рекомендации. — М., 2020. — 39 с. [Sedatsiya patsiyentov v otdeleniyakh anesteziologii, reanimatsii i intensivnoy terapii. Federatsiya anesteziologov i reanimatologov. Metodicheskiye rekomendatsii. Moscow; 2020. 39 p. (In Russ).] |
| [221] |
Kotfis K, Williams RS, Wilson J, et al. COVID-19: What do we need to know about ICU delirium during the SARS-CoV-2 pandemic? Anaesthesiol Intensive Ther. 2020;40590. doi: 10.5114/ait.2020.95164. |
| [222] |
Shneider A, Kudriavtsev A, Vakhrusheva A. Can Melatonin reduce the severity of COVID-19 pandemic? Int Rev Immunol. 2020;1–10. doi: 10.1080/08830185.2020.1756284. |
| [223] |
Zambrelli E, Canevini M, Gambini O, D’Agostino A. Delirium and sleep disturbances in COVID-19: a possible role for melatonin in hospitalized patients? Sleep Med. 2020;70:111. doi: 10.1016/j.sleep.2020.04.006. |
| [224] |
Rábano-Suárez P, Bermejo-Guerrero L, Méndez-Guerrero A, et al. Genera-lized myoclonus in COVID-19. Neurology. 2020;10.1212/WNL.0000000000009829. doi: 10.1212/WNL.00000 00000009829. |
| [225] |
Balloy G., Mahé P.J., Leclair-Visonneau L., Péréon Y. et al. Non-lesional status epilepticus in a patient with coronavirus disease 2019. Neurophysiol., 2020.doi: 10.1016/j.clinph.2020. 05.005. |
| [226] |
Garg RK, Paliwal VK, Gupta A. Encephalopathy in patients with COVID-19: a review. J Med Virol. 2020. doi: 10.1002/jmv.26207. |
| [227] |
Asadi-Pooya A.A. Seizures Associated With Coronavirus Infections. Seizure., 2020;79:49-52. doi: 10.1016/j.seizure.2020.05.005. |
| [228] |
French JA, Brodie MJ, Caraballo R. Keeping people with epilepsy safe during the Covid-19 pandemic. Neurology. 2020;94(23):1032–1037. doi: 10.1212/WNL0000000000009632. |
| [229] |
Zayet S, Abdallah YB, Royer P-Y, et al. Encephalopathy in patients with COVID-19: ‘Causality or Coincidence?’ J Med Virol. 2020;10.1002/jmv.26027. doi: 10.1002/jmv.26027. |
| [230] |
Filatov A, Sharma P, Hindi F, Espinosa PS. Neurological complications of Coronavirus disease (COVID-19) Encephalopathy. Cureus. 2020;12(3):e7352. doi: 10.7759/cureus.7352. |
| [231] |
Haddad S, Tayyar R, Risch L, et al. Encephalopathy and Seizure Activity in a COVID-19 well controlled HIV patient. IDCases. 2020;21:e00814.doi: 10.1016/j.idcr.2020.e00814. |
| [232] |
Pinto AA, Carroll LS, Nar V, et al. CNS inflammatory vasculopathy with Antimyelin Oligodendrocyte Glycoprotein Antibodies in COVID-19. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e813. doi: 10.1212/NXI.0000000000000813. |
| [233] |
Brun G, Hak J-F, Coze S, et al. COVID-19-White matter and globus pallidum lesions: demyelination or small-vessel vasculitis? Neurol Neuroimmunol Neuroinflamm. 2020;7(4):e777. doi: 10.1212/NXI.0000000000000777. |
| [234] |
Zanin L, Saraceno G, Panciani PP, et al. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir (Wien). 2020;162(7):1491–1494. doi: 1007/s00701-020-04374-x. |
| [235] |
Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C. et al. Pathological Findings of COVID-19 Associated With Acute Respiratory Distress Syndrome. Lancet Respir. Med., 2020;8(4):420-422. doi: 10.1016/S2213-2600(20)30076-X. |
| [236] |
Li Z, Huang Y, Guo X. The brain, another potential target organ, needs early protection from SARS-CoV-2 neuroinvasion. Sci China Life Sci. 2020;63(5):771–773. doi: 10.1007/s11427-020-1690-y. |
| [237] |
Colafrancesco S., Alessandri C., Conti F., Priori R. COVID-19 gone bad: A new character in the spectrum of the hyperferritinemic syndrome? Autoimmun. Rev., 2020 :102573. doi: 10.1016/ j. autrev.2020.102573. |
| [238] |
Лунева И.Е., Полищук Р.В., Чернобаева Л.С., и др. Острый некротический энцефалит, ассоциированный с вирусом гриппа, у взрослых // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2020. — Т.120. — №4. — С. 102–106. [Luneva IE, Polishchuk RV, Chernobayeva LS, et al. Ostryy nekroticheskiy entsefalit, assotsiirovannyy s virusom grippa, u vzroslykh. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(4):102–106. (In Russ).] doi: 10.17116/jnevro2020120041102. |
| [239] |
Мартынов М.Ю., Шамалов Н.А., Хасанова Д.Р., и др. Ведение пациентов с острыми нарушениями мозгового кровообращения в контексте пандемии COVID-19. Временные методические рекомендации. Версия 2.16.04. — М., 2020. — 18 с. [Martynov MYu, Shamalov NA, Khasanova DR, et al. Vedeniye patsiyentov s ostrymi narusheniyami mozgovogo krovoobrashcheniya v kontekste pandemii COVID-19. Vremennyye metodicheskiye rekomendatsii. Version 2.16.04. Moscow; 2020. 18 p. (In Russ).] |
| [240] |
Berger JR, Brandstadter R, Bar-Or A. COVID-19 and MS disease-modifying therapies. Neurol Neuroimmunol Neuroinflamm. 2020;7(4):e761. doi: 10.1212/NXI.0000000000000761. |
| [241] |
Kandasamy M. Perspectives for the Use of Therapeutic Botulinum Toxin as a multifaceted candi-date drug to attenuate COVID-19. Med Drug Discov. 2020;6:100042. doi: 10.1016/j.medidd. 2020.100042. |
| [242] |
Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. Exp Med. 2020;217(6):e20200652. doi: 10.1084/jem.20200652. |
| [243] |
Пастер Л. Избранные труды в 2 т. Т. I / Под ред. А.А. Имшенецкого. — М.: Издательство Академии Наук СССР, 1960. — 1012 с. [Paster L. Izbrannyye trudy v 2 t. Vol. I. Ed by A.A. Imshenetsky. Moscow: Izdatel’stvo Akademii Nauk SSSR; 1960. 1012 p. (In Russ).] |
| [244] |
Xu H., Zhong L., Deng J. et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8. doi: 10.1038/s41368-020-0074-x. |
| [245] |
Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. bioRxiv. 2020;2020.03.25.009084. doi: 10.1101/2020.03.25.009084. |
| [246] |
Vavougios G.D. Host Proteases as Determinants of Coronaviral Neurotropism and Virulence. Brain Behav. Immun., 2020;S0889-1591(20)30464-5. doi: 10.1016/j.bbi.2020.04.010. |
| [247] |
Zhao Y, Zhao Z, Wang Y, et al. Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. bioRxiv. 2020. doi: 10.1101/2020.01.26.919985. |
| [248] |
Bunyavanich S, Do A, Vicencio A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA. 2020;323(23):2427–2429. doi: 10.1001/jama.2020.8707. |
| [249] |
Gandhi S., Srivastava A. K., Ray U., Tripathi P.P. Is the Collapse of the Respiratory Center in the Brain Responsible for Respiratory Breakdown in COVID-19 Patients? ACS Chem Neuro- sci. 2020;11(10):1379-1381. doi: 10.1021/acschemneuro.0c00217. |
| [250] |
Zhou Z, Kang H, Li S, Zhao X. Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms. J Neurol. 2020;1–6. doi: 10.1007/s00415-020-09929-7. |
| [251] |
Le Сoupanec A, Desforges M, Meessen-Рinard M, et al. Cleavage of a neuroinvasive human respiratory virus spike glycoprotein by proprotein convertases modulates neurovirulence and virus spread within the central nervous system. PLoS Pathog. 2015;11(11):e1005261. doi: 10.1371/journal.ppat.1005261. |
| [252] |
Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory Syndrome Coronavirus-2 (SARS-CoV-2). J MedVirol. 2020;92(7):699–702. doi: 10.1002/ jmv.25915. |
| [253] |
Lau K.-K., Yu W.-C., Chu C.-M., Lau S.-T., Sheng B., Yuen K.-Y. Possible central nervous system infection by SARS coronavirus. Emerg. Infect. Dis., 2004;10(2):342-344.doi:10.32 01/eid1002.030638. |
| [254] |
Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264–7275. doi: 10.1128/JVI.00737-08. |
| [255] |
Dubé M, Le Coupanec A, Wong AH, et al. Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J Virol. 2018;92(17):e00-404-18. doi: 10.1128/JVI.00404-18. |
| [256] |
Perlman S, Evans G, Afifi A. Effect of olfactory bulb ablation on spread of a neurotropic corona-virus into the mouse brain. J Exp Med. 1990;172(4):1127–1132. doi: 10.1084/jem.172.4.1127. |
| [257] |
Niazkar HR, Zibaee B, Nasimi A, Bahri N. The neurological manifestations of COVID-19: a review article. Neurol Sci. 2020;1–5. doi: 10.1007/s10072-020-04486-3. |
| [258] |
Singh AK, Bhushan B, Maurya A, et al. Novel coronavirus disease 2019 (COVID-19) and neurodegenerative disorders. Dermatol Ther. 2020;e13591. doi: 10.1111/dth.13591. |
| [259] |
Mori I. Transolfactory neuroinvasion by viruses threatens the human brain. Acta Virol. 2015;59(4):338–349. doi: 10.4149/av_2015_04_338. |
| [260] |
Beghi E, Feigin V, Caso V, Santalucia P, Logroscino G. COVID-19 Infection and Neurological Complications: Present Findings and Future Predictions. Neuroepidemiology. 2020 Jul 1:1-6. doi: 10.1159/000508991. |
| [261] |
Wang L, Shen Y, Li M, et al. Clinical manifestations and evidence of neurological involvement in 2019 novel coronavirus SARS-CoV-2: a systematic review and meta-analysis. J Neurol. 2020;1–13. doi: 10.1007/s00415-020-09974-2. |
| [262] |
Yachou Y, El Idrissi A, Belopasov V, et al. Neuroinvasion, neurotropic and neuroinflam-matory events of SARS-CoV-2: understanding the neurological manifestations in COVID-19 patients. Neurol Sci. 2020. |
| [263] |
Koralnik IJ, Tyler KL. COVID-19: a global threat to the nervous system. Ann Neurol. 2020;88(1):1–11. doi: 10.1002/ana.25807. |
| [264] |
Kwong KC, Mehta PR, Shukla G, Mehta AR. COVID-19, SARS and MERS: a neurological perspective COVID-19, SARS and MERS: a neurological perspective. J Clin Neurosci. 2020;77:13–16. doi: 10.1016/j.jocn.2020.04.124. |
| [265] |
Whittaker A, Anson M, Harky A. Neurological manifestations of COVID-19: a systematic review and current update. Acta Neurol Scand. 2020;142(1):14–22. doi: 10.1111/ane.13266. |
| [266] |
Garg S, Garg M, Prabhakar N, Malhotra P, Agarwal R . Unraveling the mystery of Covid-19 Cytokine storm: From skin to organ systems. Dermatol Ther. 2020 Jun 19:e13859. doi: 10.1111/dth.13859. |
| [267] |
Bridwell R., Long B., Gottlieb M. Neurologic Complications of COVID-19. Am. J. Emerg. Med,. 2020. doi: 10. 1016/j.ajem.2020.05.024. |
| [268] |
Baig AM. Updates on what ACS reported: emerging evidences of COVID-19 with nervous system involvement. ACS Chem Neurosci. 2020;11(9):1204–1205. doi: 10.1021/acschem neuro.0c00181. |
| [269] |
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘cytokine storm’ in COVID-19. J Infect. 2020;80(6):607–613. doi: 10.1016/j.jinf.2020.03.037. |
| [270] |
Chigr F, Merzouki M, Najimi M. Autonomic Brain Centers and Pathophysiology of COVID-19. ACS Chem Neurosci. 2020;11(11):1520-1522. doi: 10.1021/acschem neuro.0с00265. |
| [271] |
Li K, Wohlford‐Lenane C, Perlman S, et al. Middle east respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis. 2016;213(5):712‐722. doi: 10.1093/infdis/jiv499. |
| [272] |
Li Z, Huang Y, Guo X. The Brain, Another Potential Target Organ, Needs Early Protection From SARS-CoV-2 Neuroinvasion. Sci. China Life Sci. 2020;63(5):771-773. doi: 10.1007/s11427-020-1690-y. |
| [273] |
Neilson DE, Adams MD, Orr CMD, Schelling DK, Eiben RM et al. Infection-triggered familial or recurrent cases of acute necrotizing encephalopathy caused by mutations in a component of the nuclear pore, RANBP2. Am J Hum Genet. 2009; 84:44–51. doi: 10.1016/j. ajhg.2008.12.009. |
| [274] |
Singh R.R., Sedani S., Lim M., Wassmer E., Absoud M. RANBP2 Mutation and Acute Necro-tizing Encephalopathy: 2 Cases and a Literature Review of the Expanding Clinico-Radiological Phenotype. Eur. J. Paediatr. Neurol., 2015;19(2):106-13. doi: 10.1016/j. ejpn.2014.11.010. |
| [275] |
Cappello F. COVID-19 and molecular mimicry: The Columbus’ egg? J Clin Neurosci. 2020;77:246. doi: 10.1016/j.jocn.2020.05.015. |
| [276] |
Lippi A, Domingues R, Setz C, et al. SARS-CoV-2: at the crossroad between aging and neurodegeneration. Mov Disord. 2020;35(5):716–720. doi: 10.1002/mds.28084. |
| [277] |
Papa SM, Brundin P, Fung VS, et al. Impact of the COVID-19 pandemic on parkinson’s disease and movement disorders. Mov Disord. 2020;35(5):711–715. doi: 10.1002/mds.28067. |
| [278] |
Бойко А.Н., Лащ Н.Ю., Спирин Н.Н., и др. Ведение пациентов с рассеянным склерозом в условиях пандемии COVID-19. Временные методические рекомендации. Версия 1.19.04. — М., 2020. — 12 с. [Boyko AN, Lashch NYu, Spirin NN, et al. Vedeniye patsiyentov s rasseyannym sklerozom v usloviyakh pandemii COVID-19. Vremennyye metodicheskiye rekomendatsii. Version 1.19.04. Moscow; 2020. 12 p. (In Russ).]. |
| [279] |
Rajabally YA., Goedee HS., Attarian S., Hartung H-P. Management Challenges for Chronic Dysimmune Neuropathies During the COVID-19 Pandemic. Muscle Nerve., 2020;10.1002/ mus. 26896. doi:10.1002/mus.26896. |
| [280] |
Robertson MM, Eapen V, Rizzo R, et al. Gilles de la tourette syndrome: advice in the times of COVID-19. F1000Res. 2020;9:257. doi: 10.12688/f1000 research.23-275.2. |
| [281] |
Копишинская С. В., Жаринова Н. О., Величко И. А. и др. Основные принципы ведения неврологических пациентов в период пандемии COVID-19. Нервно-мышечные болезни 2020; 10(1):31–42. DOI: 10.17650 /2222-8721-2020 – 10 – 1 – 31 – 42. |
| [282] |
Moro E. , Deuschl G., de Visser M. , Muresanu D. et al. A Call From the European Academy of Neurology on COVID-19. Lancet Neurol., 2020; 19(6):482. doi:10.1016/ S1474-4422(20)30151-4. |
| [283] |
Needham EJ., Chou S. H-Y., Coles A.J., Menon D19 Infections. Neurocrit. Care., 2020; K Neurological Implications of COVID-1919 Infections. Neurocrit. Care., 2020; 1-5. doi: 10.1007/s tions of COVID-19 Infections. Neurocrit. Care., 2020; 1-5. doi: 10.1007/s12028. |
| [284] |
https://isaric.tghn.org/covid-19-clinical-research-resources/. COVID-19 Rapid Evidence ReviewsGroup. |
Belopasov V.V., Yachou Y., Samoilova E.M., Baklaushev V.P.
/
| 〈 |
|
〉 |