A fluorescent microspheres-based microfluidic test system for the detection of immunoglobulin G to SARS-CoV-2

Ruslan I. Shakurov , Yaroslav D. Shansky , Kirill A. Prusakov , Svetlana V. Sizova , Stepan P. Dudik , Lyudmila V. Plotnikova , Valentin A. Manuvera , Dmitry V. Klinov , Vassili N. Lazarev , Julia A. Bespyatykh , Dmitriy V. Basmanov

Journal of Clinical Practice ›› 2023, Vol. 14 ›› Issue (1) : 44 -53.

PDF
Journal of Clinical Practice ›› 2023, Vol. 14 ›› Issue (1) : 44 -53. DOI: 10.17816/clinpract278280
Original Study Articles
research-article

A fluorescent microspheres-based microfluidic test system for the detection of immunoglobulin G to SARS-CoV-2

Author information +
History +
PDF

Abstract

Background: The pandemic of the new coronavirus infection, COVID-19, is currently ongoing in the world. Over the years, the pathogen, SARS-CoV-2, has undergone a series of mutational genome changes, which has led to the spread of various genetic variants of the virus. Meanwhile, the methods used to diagnose SARS-CoV-2, to establish the disease stage and to assess the immunity, are nonspecific to SARS-CoV-2 variants and time-consumable. Thus, the development of new methods for diagnosing COVID-19, as well as their implementation in practice, is currently an important direction. In particular, application of systems based on chemically modified fluorescent microspheres (with a multiplex assay for target protein molecules) opens great opportunities.

Aim: development of a microfluidic diagnostic test system based on fluorescent microspheres for the specific detection of immunoglobulins G (IgG) to SARS-CoV-2.

Methods: A collection of human serum samples was characterized using enzyme-linked immunosorbent assay (ELISA) and commercially available reagent kits. IgG to SARS-CoV-2 in the human serum were detected by the developed immunofluorescent method using microspheres containing the chemically immobilized RBD fragment of the SARS-CoV-2 (“Kappa” variant) viral S-protein.

Results: The level of IgG in the blood serum of recovered volunteers was 9-300 times higher than that in apparently healthy volunteers, according to ELISA (p<0.001). Conjugates of fluorescent microspheres with the RBD-fragment of the S-protein, capable of specifically binding IgG from the blood serum, have been obtained. The immune complexes formation was confirmed by the fluorescence microscopy data; the fluorescence intensity of secondary antibodies in the immune complexes formed on the surface of microspheres was proportional to the content of IgG (r 0.963). The test system had a good predictive value (AUC 70.3%).

Conclusion: A test system has been developed, based on fluorescent microspheres containing the immobilized RBD fragment of the SARS-CoV-2 S-protein, for the immunofluorescent detection of IgG in the human blood serum. When testing the system on samples with different levels of IgG to SARS-CoV-2, its prognostic value was shown. The obtained results allow us to present the test system as a method to assess the level of immunoglobulins to SARS-CoV-2 in the human blood serum for the implementation in clinical practice. The test system can also be integrated into various microfluidic systems to create chips and devices for the point-of-care diagnostics.

Keywords

enzyme-linked immunosorbent assay / ELISA / COVID-19 testing / personalized medicine

Cite this article

Download citation ▾
Ruslan I. Shakurov,Yaroslav D. Shansky,Kirill A. Prusakov,Svetlana V. Sizova,Stepan P. Dudik,Lyudmila V. Plotnikova,Valentin A. Manuvera,Dmitry V. Klinov,Vassili N. Lazarev,Julia A. Bespyatykh,Dmitriy V. Basmanov. A fluorescent microspheres-based microfluidic test system for the detection of immunoglobulin G to SARS-CoV-2. Journal of Clinical Practice, 2023, 14(1): 44-53 DOI:10.17816/clinpract278280

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

World Health Organization. Tracking SARS-CoV-2 variants [cited 2023 February, 20]. Режим доступа: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/. Дата обращения: 20.02.2023.

[2]

Баклаушев В.П., Юсубалиева Г.М., Бычинин М.В., и др. Рациональная стратегия поддержания противовирусного иммунитета к новым вариантам SARS-CoV-2 // Клиническая практика. 2022. Т. 13, № 3. С. 43–55. [Baklaushev VP, Yusubalieva GM, Bychinin MV, et al. A rational strategy for the maintenance of antiviral immunity to new SARS-CoV-2 strains. Journal of Clinical Practice. 2022;13(3):43–55. (In Russ).] doi: 10.17816/clinpract111120

[3]

Fernandes RS, de Oliveira Silva J, Gomes KB, et al. Recent advances in point of care testing for COVID-19 detection. Biomed Pharmacother 2022;153:113538. doi: 10.1016/J.BIOPHA.2022.113538

[4]

Filchakova O, Dossym D, Ilyas A, et al. Review of COVID-19 testing and diagnostic methods. Talanta 2022;244:123409. doi: 10.1016/J.TALANTA.2022.123409

[5]

Farmer S, Razin V, Peagler AF, et al. Don’t forget about human factors: Lessons learned from COVID-19 point-of-care testing. Cell Reports Methods 2022;2:100222. doi: 10.1016/J.CRMETH.2022.100222

[6]

Zhong Z, Wang J, He S, et al. An encodable multiplex microsphere-phase amplification sensing platform detects SARS-CoV-2 mutations. Biosens Bioelectron. 2022;203:114032.

[7]

Патент РФ № RU 200301 U1/2020.10.15. Прусаков К.А., Басманов Д.В., Алдаров К.Г., и др. Микрофлюидный чип для проведения многопараметрического иммуноанализа. [Patent RUS № RU 200301 U1/2020.10.15. Prusakov KA, Basmanov DV, Aldarov KG, et al. Microfluidic chip for multiparametric immunoassay. (In Russ).] Режим доступа: https://yandex.ru/patents/doc/RU200301U1_20201015. Дата обращения: 20.02.2023.

[8]

Yuan H, Chen P, Wan C, et al. Merging microfluidics with luminescence immunoassays for urgent point-of-care diagnostics of COVID-19. TrAC Trends Anal Chem 2022; 157:116814. doi: 10.1016/J.TRAC.2022.116814

[9]

Sheridan C. Fast, portable tests come online to curb coronavirus pandemic. Nat Biotechnol 2020;38:515–518. doi: 10.1038/D41587-020-00010-2

[10]

Drain PK, Ampajwala M, Chappel C, et al. A rapid, high-sensitivity SARS-CoV-2 nucleocapsid immunoassay to aid diagnosis of acute COVID-19 at the point of care: A clinical performance study. Infect Dis Ther. 2021;10:753–761. doi: 10.1007/S40121-021-00413-X/FIGURES/2

[11]

Chen R, Ren C, Liu M, et al. Early detection of SARS-CoV-2 seroconversion in humans with aggregation-induced near-infrared emission nanoparticle-labeled lateral flow immunoassay. ACS Nano. 2021;15:8996–9004. doi: 10.1021/ACSNANO.1C01932

[12]

Zhou Y, Chen Y, Liu W, et al. Development of a rapid and sensitive quantum dot nanobead-based double-antigen sandwich lateral flow immunoassay and its clinical performance for the detection of SARS-CoV-2 total antibodies. Sensors Actuators B Chem 2021;343:130139. doi: 10.1016/J.SNB.2021.130139

[13]

Hajazadeh F, Khanizadeh S, Khodadadi H, et al. SARS-COV-2 RBD (Receptor binding domain) mutations and variants (A sectional-analytical study). Microb Pathog 2022;168:105595. doi: 10.1016/J.MICPATH.2022.105595

[14]

Heggestad JT, Kinnamon DS, Olson LB, et al. Multiplexed, quantitative serological profiling of COVID-19 from blood by a point-of-care test. Sci Adv 2021;7:4901–4926. doi: 10.1126/SCIADV.ABG4901/SUPPL_FILE/ABG4901_SOURCE_DATA.XLSX

[15]

Gan HH, Zinno J, Piano F, Gunsalus KC. Omicron spike protein has a positive electrostatic surface that promotes ACE2 recognition and antibody escape. Front Virol 2022;2:43. doi: 10.3389/FVIRO.2022.894531

Funding

Научное исследование проведено при поддержке гранта Президента Российской ФедерацииThis work was supported by the grant of the President of Russian Federation(МК-2988.2022.3)

RIGHTS & PERMISSIONS

Shakurov R.I., Shansky Y.D., Prusakov K.A., Sizova S.V., Dudik S.P., Plotnikova L.V., Manuvera V.A., Klinov D.V., Lazarev V.N., Bespyatykh J.A., Basmanov D.V.

AI Summary AI Mindmap
PDF

44

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/