Sensitivity of antibiotic resistant coagulase-negative staphylococci to antiseptic piсloxydin

A. S. Khalatyan , M. V. Budzinskaya , E. G. Kholina , M. G. Strakhovskaya , N. A. Kolyshkina , I. B. Kovalenko , V. G. Zhukhovitsky

Journal of Clinical Practice ›› 2020, Vol. 11 ›› Issue (1) : 42 -48.

PDF
Journal of Clinical Practice ›› 2020, Vol. 11 ›› Issue (1) : 42 -48. DOI: 10.17816/clinpract17543
Basic Science
research-article

Sensitivity of antibiotic resistant coagulase-negative staphylococci to antiseptic piсloxydin

Author information +
History +
PDF

Abstract

Background. Coagulase-negative staphylococci (CNS), primarily Staphylococcus epidermidis, predominate in the normal microflora of the eye. However, due to irrational antibiotic therapy, resistant strains are widely distributed among CNS.

Aim. To study the sensitivity of the antibiotic resistant CNS isolates to picloxydine, an antiseptic.

Methods. The species, sensitivity to antibiotics and picloxydine were determined for 39 isolates of bacteria obtained from the conjunctival swabs. The cells’ morphology under the antiseptic’s influence was studied by electron microscopy.

Results. 33 isolates of S. epidermidis (17 sensitive or resistant to drugs of no more than 2 classes of antibiotics and 16 MDR), 2 S. haemolyticus (1 resistant to 2 classes of antibiotics and 1 MDR), 3 S. hominis (1 sensitive and 2 MDR), 1 S. caprae (MDR) were characterized. In in vitro tests, picloxydine showed high efficiency in suppressing the growth of staphylococci regardless of their sensitivity to antibiotics, as well as bactericidal activity at concentrations of 15.6–31.2 µg/ml, close to those of chlorhexidine. At these concentrations, the antiseptic had a destructive effect on the surface structures of bacterial cells.

Conclusion. The picloxydine antiseptic is equally effective against antibiotic- sensitive and antibiotic-resistant coagulase-negative staphylococci.

Keywords

conjunctival microflora / coagulase-negative staphylococci / antibiotic resistance / picloxydine

Cite this article

Download citation ▾
A. S. Khalatyan, M. V. Budzinskaya, E. G. Kholina, M. G. Strakhovskaya, N. A. Kolyshkina, I. B. Kovalenko, V. G. Zhukhovitsky. Sensitivity of antibiotic resistant coagulase-negative staphylococci to antiseptic piсloxydin. Journal of Clinical Practice, 2020, 11(1): 42-48 DOI:10.17816/clinpract17543

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Grice EA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244–253. doi: 10.1038/nrmicro2537.

[2]

Prola K. Coagulase-negative staphylococci pathogenomics. Int J Mol Sci. 2019;20(5). pii: E1215. doi: 10.3390/ijms20051215.

[3]

Dave SB, Toma HS, Kim SJ. Changes in ocular flora in eyes exposed to ophthalmic antibiotics. Ophthalmology. 2013;120(5):937–941. doi: 10.1016/j.ophtha.2012.11.005.

[4]

Lina G, Boutite F, Tristan A, et al. Bacterial competition for human nasal cavity colonization: role of staphylococcal agr alleles. Appl Environ Microbiol. 2003;69(1):18–23. doi: 10.1128/aem.69.1.18-23.2003.

[5]

Uckay I, Pittet D, Vaudaux P, et al. Foreign body infections due to Staphylococcus epidermidis. Ann Med. 2009;41(2):109–119. doi: 10.1080/07853890802337045.

[6]

Rogers KL, Fey PD, Rupp ME. Coagulase-negative staphylococcal infections. Infect Dis Clin North Am. 2009;23(1):73–98. doi: 10.1016/j.idc.2008.10.001.

[7]

Kim SJ, Toma HS, Midha NK, et al. Antibiotic resistance of conjunctiva and nasopharynx evaluation study: a prospective study of patients undergoing intravitreal injections. Ophthalmology. 2010;117(12):2372–2378. doi: 10.1016/j.ophtha.2010.03.034.

[8]

Kim SJ, Toma HS. Ophthalmic antibiotics and antimicrobial resistance: a randomized, controlled, study of patients undergoing intravitreal injections. Ophthalmology. 2011;118(7):1358–1363. doi: 10.1016/j.ophtha.2010.12.014.

[9]

Dave SB, Toma HS, Kim SJ. Ophthalmic antibiotic use and multidrug-resistant Staphylococcus epidermidis: a controlled, longitudinal study. Ophthalmology. 2011;118(10):2035–2040. doi: 10.1016/j.ophtha.2011.03.017.

[10]

Воронин Г.В., Будзинская М.В., Страховская М.Г., Халатян А.С. Резистентность к антибиотикам у пациентов на фоне многократных интравитреальных инъекций // Вестник офтальмологии. — 2019. — Т.135. — №3. — С. 109–112. [Voronin GV, Budzinskaya MV, Strakhovskaya MG, Khalatyan AS. Antibiotic resistance in patients after serial intravitreal injections. Annals of ophthalmology. 2019;135(3):109–112. (In Russ).] doi: 10.17116/oftalma2019135031109.

[11]

Benoist d’Azy C, Pereira B, Naughton G, et al. Antibioprophylaxis in prevention of endophthalmitis in intravitreal injection: a systematic review and meta-analysis. PLoS One. 2016;11(6):e0156431. doi: 10.1371/journal.pone.0156431.

[12]

Costa SF, Newbaer M, Santos CR, et al. Nosocomial pneumonia: importance of recognition of aetiological agents to define an appropriate initial empirical therapy. Int J Antimicrob Agents. 2001;17(2):147–150. doi: 10.1016/s0924-8579(00)00316-2.

[13]

Hsu J, Gerstenblith AT, Garg SJ, Vander JF. Conjunctival flora antibiotic resistance patterns after serial intravitreal injections without postinjection topical antibiotics. Am J Ophthalmol. 2014;157(3):514–518.e1. doi: 10.1016/j.ajo.2013.10.003.

[14]

Merani R, McPherson ZE, Luckie AP, et al. Aqueous chlorhexidine for intravitreal injection antispepsis: a case series and review of the literature. Ophthalmology. 2016;123(12):2588–2594. doi: 10.1016/j.ophtha.2016.08.022.

[15]

Будзинская М.В., Страховская М.Г., Андреева И.В., Халатян А.С. Микрофлора конъюнктивы и ее чувствительность к антибиотикам у пациентов после многократных интравитреальных инъекций // Вестник офтальмологии. — 2019. — Т.135. — №5-2. — С. 135–140. [Budzinskaya MV, Strakhovskaya MG, Andreeva IV, Khalatyan AS. Conjunctival microflora and its antibiotic sensitivity after serial intravitreal injections. Annals of ophthalmology. 2019;135(5-2):135–140. (In Russ).] doi: 10.17116/oftalma2019135052135.

[16]

Skovgaard S, Larsen MH, Nielsen LN, et al. Recently introduced qacA/B genes in Staphylococcus epidermidis do not increase chlorhexidine MIC/MBC. J Antimicrob Chemother. 2013;68(10):2226–2233. doi: 10.1093/jac/dkt182.

[17]

Cheung Y, Wong M, Cheung S, et al.. PLoS One. 2012;7(5):e36659. doi: 10.1371/journal.pone.0036659.

[18]

Castillo JA, Clapés P, Infante MR, et al. Comparative study of the antimicrobial activity of bis(Nα-caproyl-l-arginine)-1,3-propanediamine dihydrochloride and chlorhexidine dihydrochloride against Staphylococcus aureus and Escherichia coli. J Antimicrob Chemother. 2006;57(4):691–698. doi: 10.1093/jac/dkl012.

Funding

Российский Фонд Фундаментальных ИсследованийRussian Foundation for Basic Research(19-34-90045)

RIGHTS & PERMISSIONS

Khalatyan A.S., Budzinskaya M.V., Kholina E.G., Strakhovskaya M.G., Kolyshkina N.A., Kovalenko I.B., Zhukhovitsky V.G.

AI Summary AI Mindmap
PDF

54

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/