Sex differences in the connectome of the human brain according to an MR-tractography study

Ilya L. Gubskiy , Ivan S. Gumin , Maxim A. Shorikov , Mikhail M. Beregov , Leonid V. Gubsky , Vladimir G. Lelyuk

Journal of Clinical Practice ›› 2022, Vol. 13 ›› Issue (1) : 5 -13.

PDF (386KB)
Journal of Clinical Practice ›› 2022, Vol. 13 ›› Issue (1) : 5 -13. DOI: 10.17816/clinpract105017
Original Study Articles
research-article

Sex differences in the connectome of the human brain according to an MR-tractography study

Author information +
History +
PDF (386KB)

Abstract

Background: The gender differences in the brain anatomy play an important role in planning and analysis in a lot of studies of the brain. Despite most animal studies being performed on the animals of only one sex, clinical studies generally enroll both males and females. Keeping this fact in mind, learning the gender differences in the white matter structure is important for those studies which deal with the white matter changes. These differences should be considered on the stages of planning and evaluation of the results.

Aims: Evaluation of the gender differences in the white matter pathways in healthy subjects.

Methods: 21 women and 20 men were enrolled in the study. All the subjects underwent MR-tractography, then the anatomic connectome was composed and the differences were evaluated using the tracts quantitative anisotropy (QA) evaluation.

Results: The gender differences were found in the white matter pathways with the prevalence of quantitative anisotropy in women, observed in a larger number of tracts than in those of men. QA was prevalent in a lot of fascicli that form major pathways in both groups: corpus callosum, dominant arcuate fasciclus, inferior fronto-occipital, inferior and superior right longitudinal pathways.

Conclusions: The white matter pathways in males and females are different not only within the major tracts but also for small fascicli that form tracts.

Keywords

connectome / healthy volunteers / sex characteristics / MR-tractography

Cite this article

Download citation ▾
Ilya L. Gubskiy, Ivan S. Gumin, Maxim A. Shorikov, Mikhail M. Beregov, Leonid V. Gubsky, Vladimir G. Lelyuk. Sex differences in the connectome of the human brain according to an MR-tractography study. Journal of Clinical Practice, 2022, 13(1): 5-13 DOI:10.17816/clinpract105017

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cahill L. Why sex matters for neuroscience. Nature Rev Neuroscience. 2006;7(6):477–484. doi: 10.1038/nrn1909

[2]

Rutter M, Caspi A, Moffitt TE. Using sex differences in psychopathology to study causal mechanisms: Unifying issues and research strategies. J Child Psychology Psychiatry Allied Disciplines. 2003;44(8):1092–1115. doi: 10.1111/1469-7610.00194

[3]

Mazure CM, Swendsen J. Sex differences in Alzheimer’s disease and other dementias. Lancet Neurol. 2016;15(5):451–452. doi: 10.1016/S1474-4422(16)00067-3

[4]

Hyde JS. Gender similarities and differences. Annual Rev Psychol. 2014;65:373–398. doi: 10.1146/annurev-psych-010213-115057

[5]

Archer J. Sex differences in aggression in real-world settings: A meta-analytic review. Rev General Psychol. 2004;8(4):291–322. doi: 10.1037/1089-2680.8.4.291

[6]

Ritchie SJ, Cох SR, Shen X, et al. Sex differences in the adult human brain: Evidence from 5216 UK biobank participants. Cereb Cortex. 2018;28(8):2959–2975. doi: 10.1093/cercor/bhy109

[7]

Van den Heuvel MP, de Reus MA, Barrett LF, et al. Comparison of diffusion tractography and tract-tracing measures of connectivity strength in rhesus macaque connectome. Hum Brain Mapp. 2015;36(8):3064–3075. doi: 10.1002/hbm.22828

[8]

Yeh FC, Wedeen VJ, Tseng WY. Generalized q-sampling imaging. IEEE Trans Med Imaging. 2010;29(9):1626–1635. doi: 10.1109/TMI.2010.2045126

[9]

Yeh FC, Tseng WY. NTU-90: A high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage. 2011;58(1):91–99. doi: 10.1016/j.neuroimage.2011.06.021

[10]

Yeh FC, Verstynen TD, Wang Y, et al. Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One. 2013;8(11):e80713. doi: 10.1371/journal.pone.0080713

[11]

Yeh FC, Panesar S, Barrios J, et al. Automatic Removal of False Connections in Diffusion MRI Tractography Using Topology-Informed Pruning (TIP). Neurotherapeutics. 2019;16(1):52–58. doi: 10.1007/s13311-018-0663-y

[12]

Yeh FC, Panesar S, Fernandes D, et al. Population-averaged atlas of the macroscale human structural connectome and its network topology. Neuroimage. 2018;178:57–68. doi: 10.1016/j.neuroimage.2018.05.027

[13]

Jung M, Mody M, Fujioka T, et al. Sex differences in white matter pathways related to language ability. Front Neurosci. 2019; 13:898. doi: 10.3389/fnins.2019.00898

[14]

Kanaan RA, Allin M, Picchioni M, et al. Gender differences in white matter microstructure. PLoS One. 2012;7(6):e38272. doi: 10.1371/journal.pone.0038272

[15]

Westerhausen R, Walter C, Kreude F, et al. The influence of handedness and gender on the microstructure of the human corpus callosum: A diffusion-tensor magnetic resonance imaging study. Neurosci Lett. 2003;351(2):99–102. doi: 10.1016/j.neulet.2003.07.011

[16]

Shin YW, Kim DJ, Ha TH, et al. Sex differences in the human corpus callosum: Diffusion tensor imaging study. Neuroreport. 2005;16(8):795–798. doi: 10.1097/00001756-200505310-00003

[17]

Menzler K, Belke M, Wehrmann E, et al. Men and women are different: Diffusion tensor imaging reveals sexual dimorphism in the microstructure of the thalamus, corpus callosum and cingulum. Neuroimage. 2011;54(4):2557–2562. doi: 10.1016/j.neuroimage.2010.11.029

[18]

Lee CE, Danielian LE, Thomasson D, Baker EH. Normal regional fractional anisotropy and apparent diffusion coefficient of the brain measured on a 3T MR scanner. Neuroradiology. 2009; 51(1):3–9. doi: 10.1007/s00234-008-0441-3

[19]

Wu YC, Field AS, Whalen PJ, Alexander AL. Age- and gender-related changes in the normal human brain using hybrid diffusion imaging (HYDI). Neuroimage. 2011;54(3):1840–1853. doi: 10.1016/j.neuroimage.2010.09.067

[20]

Oh JS, Song IC, Lee JS, et al. Tractography-guided statistics (TGIS) in diffusion tensor imaging for the detection of gender difference of fiber integrity in the midsagittal and parasagittal corpora callosa. Neuroimage. 2007;36(3):606–616. doi: 10.1016/j.neuroimage.2007.03.020

[21]

Inano S, Takao H, Hayashi N, et al. Effects of age and gender on white matter integrity. Am J Neuroradiol. 2011;32(11):2103–2109. doi: 10.3174/ajnr.A2785

RIGHTS & PERMISSIONS

Gubskiy I.L., Gumin I.S., Shorikov M.A., Beregov M.M., Gubsky L.V., Lelyuk V.G.

AI Summary AI Mindmap
PDF (386KB)

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/