Biochemical markers of surgical stress in endoscopic rhinosinus surgery under combined anesthesia in children
Tatiana A. Ovchar , Vladimir V. Lazarev , Lyudmila S. Korobova
Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care ›› 2021, Vol. 11 ›› Issue (3) : 307 -314.
Biochemical markers of surgical stress in endoscopic rhinosinus surgery under combined anesthesia in children
BACKGROUND: Endoscopic rhinosinus surgery in children is associated with a high anesthetic risk because of intraoperative stress. This study aimed to, considering the dynamic picture of the biochemical markers of surgical stress, to assess the effectiveness of regional methods of combined anesthesia in rhinosinus surgery in children.
MATERIALS AND METHODS: A comparative study was conducted in parallel groups composed of 100 patients aged 6–17 years who had undergone an assessment of their physical condition using the ASA I-II scales and planned endoscopic endonasal surgery lasting up to 2 h under combined anesthesia. In all groups, the introductory anesthesia was combined, i.e., inhalation of sevoflurane in an oxygen–air mixture in combination with intravenous administration of propofol. To ensure the patency of the respiratory tract, endotracheal anesthesia was administered. Patients were divided into two groups of 50 people each, depending on the method of maintaining anesthesia. Group 1 received inhalation of sevoflurane in an air–oxygen mixture with a target value of the minimum alveolar concentration of (MAC) 0.7–0.9, and regional blockage was performed bilaterally, i.e., pterygopalatine anesthesia with palatine access (palatinal) and infra-orbital intraoral access with ropivacaine solution. Group 2 received inhalation of sevoflurane in an air–oxygen mixture with a target value of 1.5 МАС, and 5% tramadol solution was used intravenously for analgesia.
RESULTS: Data on the dynamics of glucose, lactate, and cortisol levels in both groups proved the effectiveness and stability of the anesthesia methods used. However, the concentration of the inhaled anesthetic agent in the tramadol group was used was twice as high as the concentration in the regional anesthetic group.
DISCUSSION: The dynamics and deviations of biochemical markers of surgical stress were not significantly different in the intergroup and intragroup interstage parameters beyond the reference values.
CONCLUSIONS: The proposed anesthesia methods did not induce stress reactions to surgical intervention, and the anesthesia methods in both groups were adequate and effective.
rhinosinus surgery / stress markers / anesthesia / regional anesthesia / children
| [1] |
Ram E, Vishne TH, Weinstein T, et al. General anesthesia for surgery influences melatonin and cortisol levels. World J Surg. 2005;29(7):826–829. DOI: 10.1007/s00268-005-7724-1 |
| [2] |
Ram E., Vishne T.H., Weinstein T., et al. General anesthesia for surgery influences melatonin and cortisol levels // World J Surg. 2005. Vol. 29. No. 7. P. 826–829. DOI: 10.1007/s00268-005-7724-1 |
| [3] |
Sakai T. Biological response to surgical stress — endocrine response. Masui. The Japanese journal of anesthesiology. 1996;45 Suppl:25–30. PMID: 9044941 |
| [4] |
Sakai T. [Biological response to surgical stress — endocrine response] // Masui. The Japanese journal of anesthesiology. 1996. Vol. 45 Suppl. P. 25–30. (In Jpn) PMID: 9044941 |
| [5] |
Komatsu T, Kimura T. Surgical stress and nervous systems. Masui. The Japanese journal of anesthesiology. 1996;45 Suppl:16–24. PMID: 9044930 |
| [6] |
Komatsu T., Kimura T. Surgical stress and nervous systems // Masui. The Japanese journal of anesthesiology. 1996. Vol. 45. P. 16–24. PMID: 9044930 |
| [7] |
Weiss M, Hansen TG, Engelhardt T. Ensuring safe anaesthesia for neonates, infants and young children: what really matters. Arch Dis Child. 2016;101(7):650–652. DOI: 10.1136/archdischild-2015-310104 |
| [8] |
Weiss M., Hansen T.G., Engelhardt T. Ensuring safe anaesthesia for neonates, infants and young children: what really matters // Arch Dis Child. 2016. Vol. 101. No. 7. P. 650–652. DOI: 10.1136/archdischild-2015-310104 |
| [9] |
Anand KS, Hickey PR. Pain and its effects in the human neonate and fetus. N Engl J Med. 1987;317(21):1321–1329. DOI: 10.1056/NEJM198711193172105 |
| [10] |
Anand K.S., Hickey P.R .Pain and its effects in the human neonate and fetus // N Engl J Med. 1987. Vol. 317. No. 21. P. 1321–1329. DOI: 10.1056/NEJM198711193172105 |
| [11] |
Black PR, Brooks DC, Bessey PQ, et al. Mechanisms of insulin resistance following injury. Ann Surg. 1982;196(4):420–435. DOI: 10.1097/00000658-198210000-00005 |
| [12] |
Black P.R., Brooks D.C., Bessey P.Q., et al. Mechanisms of insulin resistance following injury // Ann Surg. 1982. Vol. 196. No. 4. P. 420–435. DOI: 10.1097/00000658-198210000-00005 |
| [13] |
Jahoor F, Shangraw RE, Miyoshi H, et al. Role of insulin and glucose oxidation in mediating the protein catabolism of burns and sepsis. Am J Physiol. 1989;257(3):323–331. DOI: 10.1152/ajpendo.1989.257.3.E323 |
| [14] |
Jahoor F., Shangraw R.E., Miyoshi H., et al. Role of insulin and glucose oxidation in mediating the protein catabolism of burns and sepsis // Am J Physiol. 1989. Vol. 257. No. 3. P. 323–331. DOI: 10.1152/ajpendo.1989.257.3.E323 |
| [15] |
Sun LS, Li G, Miller TL, et al. Association Between a Single General Anesthesia Exposure Before Age 36 Months and Neurocognitive Outcomes in Later Childhood. JAMA. 2016;315(21):2312–2320. DOI: 10.1001/jama.2016.6967 |
| [16] |
Sun L.S., Li G., Miller T.L., et al. Association Between a Single General Anesthesia Exposure Before Age 36 Months and Neurocognitive Outcomes in Later Childhood // JAMA. 2016. Vol. 315. No. 21. P. 2312–2320. DOI: 10.1001/jama.2016.6967 |
| [17] |
Jevtovic-Todorovic V. General Anesthetics and Neurotoxicity. How Much Do We Know? Anesthesiology Clin. 2016;34(3):439–451. DOI: 10.1016/j.anclin.2016.04.001 |
| [18] |
Jevtovic-Todorovic V. General Anesthetics and Neurotoxicity. How Much Do We Know? // Anesthesiology Clin. 2016. Vol. 34. No. 3. P. 439–451. DOI: 10.1016/j.anclin.2016.04.001 |
| [19] |
Ji MH, Wang ZY, Sun XR, et al. Repeated Neonatal Sevoflurane Exposure-Induced Developmental Delays of Parvalbumin Interneurons and Cognitive Impairments Are Reversed by Environmental Enrichment. Mol Neurobiol. 2016;54(5):628–637. DOI: 10.1007/s12035–016–9943-x |
| [20] |
Ji M.H., Wang Z.Y., Sun X.R., et al. Repeated Neonatal Sevoflurane Exposure-Induced Developmental Delays of Parvalbumin Interneurons and Cognitive Impairments Are Reversed by Environmental Enrichment // Mol Neurobiol. 2016. Vol. 54. No. 5. P. 628–637. DOI: 10.1007/s12035–016–9943-x |
| [21] |
Zhenga B, Laia R, Lia J, Zuoa Z. Critical role of P2X7 receptors in the neuroinflammation and cognitive dysfunction after surgery. Brain, Behavior, and Immunity. 2017;61:365–374. DOI: 10.1016/j.bbi.2017.01.005 |
| [22] |
Zhenga B., Laia R., Lia J., Zuoa Z. Critical role of P2X7 receptors in the neuroinflammation and cognitive dysfunction after surgery // Brain, Behavior, and Immunity. 2017. Vol. 61. P. 365–374. DOI: 10.1016/j.bbi.2017.01.005 |
| [23] |
Montana M, Evers AS. Anesthetic Neurotoxicity: New Findings and Future Directions. J Pediatr. 2017;181:279–285. DOI: 10.1016/j.jpeds.2016.10.049 |
| [24] |
Montana M., Evers A.S. Anesthetic Neurotoxicity: New Findings and Future Directions // J Pediatr. 2017. Vol. 181. P. 279–285. DOI: 10.1016/j.jpeds.2016.10.049 |
| [25] |
Jackson WM, Gray CD, Jiang D, et al. Molecular Mechanisms of Anesthetic Neurotoxicity: A Review of the Current Literature. J Neurosurg Anesthesiol. 2016;28(4):361–372. DOI: 10.1097/ana.0000000000000348 |
| [26] |
Jackson W.M., Gray C.D., Jiang D., et al. Molecular Mechanisms of Anesthetic Neurotoxicity: A Review of the Current Literature // J Neurosurg Anesthesiol. 2016. Vol. 28. No. 4. P. 361–372. DOI: 10.1097/ana.0000000000000348 |
| [27] |
Block RI, Thomas JJ, Bayman EO, et al. A Users’ Guide to Interpreting Observational Studies of Pediatric Anesthetic Neurotoxicity. The Lessons of Sir Bradford Hill. Anesthesiology. 2012;117(3):494–503. DOI: 10.1097/aln.0b013e31826446a5 |
| [28] |
Block R.I., Thomas J.J., Bayman E.O., et al. A Users’ Guide to Interpreting Observational Studies of Pediatric Anesthetic Neurotoxicity. The Lessons of Sir Bradford Hill // Anesthesiology. 2012. Vol. 117. No. 3. P. 494–503. DOI: 10.1097/aln.0b013e31826446a5 |
| [29] |
Ing C, DiMaggio C, Whitehouse A, et al. Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics. 2012;130(3):476–485. DOI: 10.1542/peds.2011–3822 |
| [30] |
Ing C., DiMaggio C., Whitehouse A., et al. Long-term differences in language and cognitive function after childhood exposure to anesthesia // Pediatrics. 2012. Vol. 130. No. 3. P. 476–485. DOI: 10.1542/peds.2011–3822 |
| [31] |
Shpaner RYa, Bayalieva AZh, Pasheev AV, et al. Inhalation anesthetics and cerebral protection during neurosurgical interventions. Kazan Medical Journal. 2008;89(6):827–829. (In Russ.) |
| [32] |
Шпанер Р.Я., Баялиева А.Ж., Пашеев А.В., и др. Ингаляционные анестетики и защита мозга при нейрохирургических вмешательствах // Казанский медицинский журнал. 2008. Т. 89, № 6. С. 827–829. |
| [33] |
Korobova LS, Lazarev VV, Balashova LM, Kantarzhi EP. Stress-response expression in different anesthesia techniques during ophthalmosurgical interventions in children. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2018;8(3):67–73. (In Russ.) DOI: 10.30946/2219-4061-2018-8-3-67-75 |
| [34] |
Коробова Л.С., Лазарев В.В., Балашова Л.М., Кантаржи Е.П. Стресс-реакции при различных методах анестезии во время офтальмохирургических вмешательств у детей // Российский вестник детской хирургии, анестезиологии и реаниматологии. 2018. Т. 8, № 3. С. 67–73. DOI: 10.30946/2219-4061-2018-8-3-67-75 |
| [35] |
Cok OY, Erkan AN, Eker HE, Aribogan A. Practical regional blocks for nasal fracture in a child: blockade of infraorbital nerve and external nasal branch of anterior ethmoidal nerve. J Clin Anesth. 2015;27(5):436–438. DOI: 10.1016/j.jclinane.2015.03.018 |
| [36] |
Cok O.Y., Erkan A.N., Eker H.E., Aribogan A. Practical regional blocks for nasal fracture in a child: blockade of infraorbital nerve and external nasal branch of anterior ethmoidal nerve // J Clin Anesth. 2015. Vol. 27. No. 5. P. 436–438. DOI: 10.1016/j.jclinane.2015.03.018 |
| [37] |
Abubaker AK, Al-Qudah MA. The Role of Endoscopic Sphenopalatine Ganglion Block on Nausea and Vomiting After Sinus Surgery. Am J Rhinol Allergy. 2018;32(5):369–373. DOI: 10.1177/1945892418782235 |
| [38] |
Abubaker A.K., Al-Qudah M.A. The Role of Endoscopic Sphenopalatine Ganglion Block on Nausea and Vomiting After Sinus Surgery // Am J Rhinol Allergy. 2018. Vol. 32. No. 5. P. 369–373. DOI: 10.1177/1945892418782235 |
| [39] |
Kim DH, Kang H, Hwang SH. The Effect of Sphenopalatine Block on the Postoperative Pain of Endoscopic Sinus Surgery: A Meta-analysis. Otolaryngol Head Neck Surg. 2018;160(2):223–231. DOI: 10.1177/0194599818805673 |
| [40] |
Kim D.H., Kang H., Hwang S.H. The Effect of Sphenopalatine Block on the Postoperative Pain of Endoscopic Sinus Surgery: A Meta-analysis // Otolaryngol Head Neck Surg. 2018. Vol. 160. No. 2. P. 223–231. DOI: 10.1177/0194599818805673 |
| [41] |
Naik SM, Naik SS. Combined Nasociliary and Infraorbital Nerve Block: An Effective Regional Anesthesia Technique in Managing Nasal Bone Fractures. Journal on Recent Advances in Pain. 2019;5(1):3–5. DOI: 10.5005/jp-journals-10046-0131 |
| [42] |
Naik S.M., Naik S.S. Combined Nasociliary and Infraorbital Nerve Block: An Effective Regional Anesthesia Technique in Managing Nasal Bone Fractures // Journal on Recent Advances in Pain. 2019. Vol. 5. No. 1. P. 3–5. DOI: 10.5005/jp-journals-10046-0131 |
Ovchar T.A., Lazarev V.V., Korobova L.S.
/
| 〈 |
|
〉 |