Fundamentals of photodynamic therapy, clinical practice and prospects for use in pediatric surgery. Review

Saidkhasan M. Bataev , Konstantin S. Tsilenko , Anatoly N. Osipov , Andrey V. Reshetnikov , Ali S. Bataev , Sofya P. Sosnova

Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care ›› 2022, Vol. 12 ›› Issue (4) : 461 -472.

PDF
Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care ›› 2022, Vol. 12 ›› Issue (4) : 461 -472. DOI: 10.17816/psaic936
Reviews
review-article

Fundamentals of photodynamic therapy, clinical practice and prospects for use in pediatric surgery. Review

Author information +
History +
PDF

Abstract

The paper provides a review of domestic and foreign literature on photodynamic therapy, which is mainly used by oncologists in the treatment of adult patients and is little known to pediatric surgeons. The aim of this work is to describe the history of the formation, principles and mechanisms of photodynamic therapy, the main groups of photo sensitizers, areas of clinical application and prospects for wider use in pediatric surgery.

Literature sources were searched in the databases in Russian eLibrary and English Medline and PubMed. The following keywords were specified for the search: photodynamic therapy, dysplasia, metaplasia, angiodysplasia, Barrett’s syndrome, children. 865 papers were found, of which 66 were fully consistent with the purpose of our study and were analyzed.

The data presented in the review of the literature indicate the high efficiency of the method of photodynamic therapy in the treatment of a number of diseases, mostly in oncology. In addition, the work contains theoretical calculations and separate reports on the effectiveness of the method in the treatment of dysplasia of varying degrees in children.

Taking into account the minimally invasiveness of the technique, the relative cheapness of photosensitizers and equipment for generating laser radiation, it is possible to create a basis for conducting research on the treatment of children with various dysplasias, epithelial metaplasia, and vascular malformations. Another promising direction is the development of technologies for the use of photodynamic methods for the treatment of severe forms of pyoinflammatory diseases in children.

In childhood surgery, there are nosological forms of diseases where the method of photodynamic therapy has the prospect of effective use. Limitations on the scope of this article do not allow for a detailed analysis of the existing experience in the use of photodynamic therapy in children, which will need to be done in subsequent works.

Keywords

photodynamic therapy / photo sensitizers / oncology / dysplasia / metaplasia / angiodysplasia / Barrett’s esophagus / pediatric surgery

Cite this article

Download citation ▾
Saidkhasan M. Bataev, Konstantin S. Tsilenko, Anatoly N. Osipov, Andrey V. Reshetnikov, Ali S. Bataev, Sofya P. Sosnova. Fundamentals of photodynamic therapy, clinical practice and prospects for use in pediatric surgery. Review. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care, 2022, 12(4): 461-472 DOI:10.17816/psaic936

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kautsky H, Hirsch A. Neue Versuchezur Kohlensäure assimilation. Natur Wissenschaften. 1931;19:964. (In Deutsch) DOI: 10,1007/BF01516164

[2]

Kautsky H., HirschA. Neue Versuchezur Kohlensäure assimilation // Natur wissenschaften 1931. Vol. 19. P. 964. DOI:10,1007/BF01516164

[3]

Dougherty TJ, Henderson BW. How does photodynamic therapy work? Photochem Photobiol. 1992;55:145–157. DOI: 10.1111/j.1751-1097.1992.tb04222.x

[4]

Dougherty T.J., Henderson B.W. How does photodynamic therapy work? // Photochem Photobiol 1992. Vol. 55. P. 145–157. DOI: 10.1111/j.1751-1097.1992.tb04222.x

[5]

Slesarevskaya MN, Sokolov AV. Photodynamic therapy: basic principles and mechanisms of action. Urologicheskiye vedomosti. 2012;3:24–28. (In Russ.) DOI: 10.17816/uroved2324-28

[6]

Слесаревская М.Н., Соколов А.В. Фотодинамическая терапия: основные принципы и механизмы действия // Урологические ведомости. 2012. Т. 3. С. 24–28. DOI: 10.17816/uroved2324-28

[7]

Xue LY, Chiu SM, Azizuddin K, et al. Protection by Bcl-2 against apoptotic but not autophagic cell death after photodynamic therapy. Autophagy. 2008;4:125–127. DOI: 10.4161/auto.5287

[8]

Xue L.Y., Chiu S.M., Azizuddin K., et al. Protection by Bcl-2 against apoptotic but not autophagic cell death after photodynamic therapy // Autophagy. 2008. Vol. 4. P. 125–127.DOI: 10.4161/auto.5287

[9]

Reiners JJ, Agostinis P, Berg K, et al. Assessing autophagy in the context of photodynamic therapy. Autophagy. 2010;6:7–18. DOI: 10.4161/auto.5287

[10]

Reiners J.J., Agostinis P., Berg K., et al. Assessing autophagy in the context of photodynamic therapy // Autophagy. 2010. Vol. 6. P. 7–18. DOI: 10.4161/auto.5287

[11]

Wei MF, Chen MW, Chen KC, et al Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells. Autophagy. 2014;10:1179–1192. DOI: 10.4161/auto.28679

[12]

Wei M.F., Chen M.W., Chen K.C., et al. Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells // Autophagy. 2014. Vol. 10. P. 1179–1192. DOI: 10.4161/auto.28679

[13]

Bonett R. Photosensitizers of the porphyrins and phtalocyanine series for photodynamic therapy. Chem Soc Rev. 1995;24:19–33. DOI: 10.1039/CS9952400019

[14]

Bonett R. Photosensitizers of the porphyrins and phtalocyanine series for photodynamic therapy // Chem Soc Rev 1995. Vol. 24. P. 19–33. DOI: 10.1039/CS9952400019

[15]

Kato H, Konaka C, Kawate N, et al. Five-year disease-free survival of a lung cancer patient treated only by photodynamic therapy. Chest. 1986;90(5):768–770. DOI: 10.1378/chest.90.5.768

[16]

Kato H., Konaka C., Kawate N., et al. Five-year disease-free survival of a lung cancer patient treated only by photodynamic therapy // Chest. 1986. Vol. 90, No. 5. P. 768–770. DOI: 10.1378/chest.90.5.768

[17]

Furuse К, Fukuoka M, Kato H, et al. A prospective phase II study on photodynamic therapy with Photofrin II for centrally located early-stage lung cancer. J Clin Oncol. 1993;11:1852–1857.

[18]

Furuse K., Fukuoka M., Kato H., et al. A prospective phase II study on photodynamic therapy with photofrin II for centrally located early-stage lung cancer. The Japan Lung Cancer Photodynamic Therapy Study Group // J Clin Oncol. 1993. Vol. 11, No. 10. P. 1852–1857. DOI: 10.1200/JCO.1993.11.10.1852

[19]

Stranadko EF. Lasernaya I magnitnaya terapiya v experementalnih I klinicheskih issledovaniyah. 1993;69–72. (In Russ.)

[20]

Странадко Е.Ф. Первый опыт фотодинамической терапии рака в России // Лазерная и магнитная терапия в экспериментальных и клинических исследованиях. 1993. C. 69–72.

[21]

Sobolev AS, Stranadko EPh. Photodynamic therapy in Russia: clinical and fundamental aspects. Int Photodynamics. 1997;6:2–3.

[22]

Sobolev A.S., Stranadko E.Ph. Photodynamic therapy in Russia: clinical and fundamental aspects // Int Photodynamics 1997. Vol. 6. P. 2–3.

[23]

Mongin O, Sankar M, Charlot M, et al. Strong enhancement of two-photon absorption properties in synergic ‘semi-disconnected’ multiporphyrin assemblies designed for combined imaging and photodynamic therapy. Tetrahedron Letters. 2013;54:6474–6478. DOI: 10.1016/j.tetlet.2013.09.076

[24]

Mongin O., Sankar M., Charlot M., et al. Strong enhancement of two-photon absorption properties in synergic ‘semi-disconnected’ multiporphyrin assemblies designed for combined imaging and photodynamic therapy // Tetrahedron Letters. 2013. Vol. 54, No. 48. P. 6474–6478. DOI: 10.1016/j.tetlet.2013.09.076

[25]

Ying Z, Li X, Dang H. 5-aminolevulinic acid-based photodynamic therapy for the treatment of condylomata acuminata in Chinese patients: a meta-analysis. Photodermatol Photoimmunol Photomed. 2013;29(3):149–159. DOI: 10.1111/phpp.12043

[26]

Ying Z., Li X., Dang H. 5-aminolevulinic acid-based photodynamic therapy for the treatment of condylomata acuminata in Chinese patients: a meta-analysis // Photodermatol Photoimmunol Photomed. 2013. Vol. 29, No. 3. P. 149–159. DOI: 10.1111/phpp.12043

[27]

Wachowska M, Muchowicz A, Firczuk M, et al. Aminolevulinic Acid (ALA) as a Prodrug in Photodynamic Therapy of Cancer. Molecules. 2011;16(5):4140–4164. DOI: 10.3390/molecules16054140

[28]

Wachowska M., Muchowicz A., Firczuk M., et al. Aminolevulinic Acid (ALA) as a Prodrug in Photodynamic Therapy of Cancer // Molecules. 2011. Vol. 16, No. 5. P. 4140–4164. DOI: 10.3390/molecules16054140

[29]

Sokolov VV, Chisov VI, Filonenko EB, at al. Fluorescence diagnostics and photodynamic therapy with photosens and alasens: experience of 11 years of clinical use. Russian Journal of Biotherapy. 2006;5:32–33. (In Russ.)

[30]

Соколов В.В., Чиссов В.И., Филоненко Е.В. и др. Флюоресцентная диагностика и фотодинамическая терапия с препаратами фотосенс и аласенс: опыт 11-летнего клинического применения // Российский биотерапевтический журнал. 2006. Т. 5, № 1. С. 32–33.

[31]

Sessler JL, Miller RA. Texaphyrins: new drugs with diverse clinical applications in radiation and photodynamic therapy. Biochem Pharmacol. 2000;59(7):733–739. DOI: 10.1016/s0006- 2952(99)00314-7

[32]

Sessler J.L., Miller R.A. Texaphyrins: new drugs with diverse clinical applications in radiation and photodynamic therapy // Biochem Pharmacol. 2000. Vol. 59, No. 7. P. 733–739. DOI: 10.1016/s0006-2952(99)00314-7

[33]

Moussaron A, Arnoux P, Vanderesse R, et al. Lipophilic phthalocyanines for their potential interest in photodynamic therapy: synthesis and photo-physical properties. Tetrahedron. 2013;69(47):10116–10122. DOI: 10.1016/j.tet.2013.09.035

[34]

Moussaron A., Arnoux P., Vanderesse R., et al. Lipophilic phthalocyanines for their potential interest in photodynamic therapy: synthesis and photo-physical properties // Tetrahedron. 2013. Vol. 69, No. 47. P. 10116–10122. DOI: 10.1016/j.tet.2013.09.035

[35]

Cakir D, Cakir V, Biyiklioglu Z, et al. New water soluble cationic zinc phthalocyanines as potential for photodynamic therapy of cancer. Journal of Organometallic Chemistry. 2013;745:423–431.

[36]

Cakir D., Cakir V., Biyiklioglu Z., et al. New water soluble cationic zinc phthalocyanines as potential for photodynamic therapy of cancer // Journal of Organometallic Chemistry. 2013. Vol. 745. P. 423–431. DOI: 10.1016/j.jorganchem.2013.08.025

[37]

Sokolova NV, Schotten T, Berthold HJ, et al. Microwave-assisted synthesis of triazole-linked phthalocyanine-peptide conjugates as potential photosensitizers for photodynamic therapy. Synthesis. 2013;45:556–561. DOI: 10.1055/s-0032-1316845

[38]

Sokolova N.V., Schotten T., Berthold H.J., et al. Microwave-assisted synthesis of triazole-linked phthalocyanine-peptide conjugates as potential photosensitizers for photodynamic therapy // Synthesis. 2013. Vol. 45, No. 4. P. 556–561. DOI: 10.1055/s-0032-1316845

[39]

Smirnova ZS, Kubasova IYu, Makarova OA, et al. Preclinical study of the effectiveness of the liposomal dosage form of photosens for photodynamic therapy. Russian Journal of Biotherapy. 2003;2:40–46. (In Russ.)

[40]

Смирнова З.С. Кубасова И.Ю., Макарова О.А., и др. Доклиническое изучение эффективности липосомальной лекарственной формы фотосенса для фотодинамической терапии // Российский биотерапевтический журнал. 2003. Т. 2. С. 40–46.

[41]

Asano R, Nagami A, Fukumoto Y, et al. Synthesis and biological evaluation of new chlorin derivatives as potential photosensitizers for photodynamic therapy. Bioorg Med Chem. 2013;21(8):2298–2304. DOI: 10.1016/j.bmc.2013.02.005

[42]

Asano R, Nagami A, Fukumoto Y, et al. Synthesis and biological evaluation of new chlorin derivatives as potential photosensitizers for photodynamic therapy // Bioorg Med Chem. 2013. Vol. 21, No. 8. P. 2298–2304. DOI: 10.1016/j.bmc.2013.02.005

[43]

Zhang J, Deng L, Yao J, et al. Synthesis and photobiological study of a novel chlorin photosensitizer BCPD-18MA for photodynamic therapy. Bioorg Med Chem. 2011;19(18):5520–5528. DOI: 10.1016/j.bmc.2011.07.041

[44]

Zhang J., Deng L., Yao J., et al. Synthesis and photobiological study of a novel chlorin photosensitizer BCPD-18MA for photodynamic therapy // Bioorg Med Chem. 2011. Vol. 19, No. 18. P. 5520–5528. DOI: 10.1016/j.bmc.2011.07.041

[45]

Asano R., Nagami A., Fukumoto Y., et al. Synthesis and biological evaluation of new boron-containing chlorin derivatives as agents for both photodynamic therapy and boron neutron capture therapy of cancer. Bioorg Med Chem. 2014;24(5):1339–1343. DOI: 10.1016/j.bmcl.2014.01.054

[46]

Asano R., Nagami A., Fukumoto Y., et al. Synthesis and biological evaluation of new boron-containing chlorin derivatives as agents for both photodynamic therapy and boron neutron capture therapy of cancer // Bioorg Med Chem. 2014. Vol. 24, No. 5. P. 1339–1343. https://doi.org/10.1016/j.bmcl.2014.01.054

[47]

Pandey RK, Sumlin AB, Constantine S, et al. Alkyl ether analogs of chlorophyll-a derivatives: Part 1. Synthesis, photophysical properties and photodynamic efficacy. Photochem Photobiol. 1996;64(1):194–204. DOI: 10.1111/j.1751-1097.1996.tb02442.x

[48]

Pandey R.K., Sumlin A.B., Constantine S., et al. Alkyl ether analogs of chlorophyll-a derivatives: Part 1. Synthesis, photophysical properties and photodynamic efficacy // Photochem Photobiol. 1996. Vol. 64, No. 1. P. 194–204. DOI: 10.1111/j.1751-1097.1996.tb02442.x

[49]

Volgin VN, Stranadko EF, Sadovskaya MV, Ryabov MV. Experience in the application of photodynamic therapy of basal cell skin cancer of various localizations with a photosensitizer photoditazine. Russian Journal of Biotherapy. 2009;2:31–32. (In Russ.)

[50]

Волгин В.Н., Странадко Е.Ф., Садовская М.В., Рябов М.В. Опыт применения фотодинамической терапии базальноклеточного рака кожи различных локализаций с фотосенсибилизатором фотодитазин // Российский биотерапевтический журнал. 2009. Т. 8, № 2. С. 31–32.

[51]

Loshchenov VB, Linkov KG, Savelyeva TA. Hardware and tool equipment for fluorescence diagnostics and photodynamic therapy. Photodynamic Therapy and Photodyagnosis. 2013;2(3):17–25. (In Russ.)

[52]

Лощенов В.Б., Линьков К.Г., Савельева Т.А. Аппаратурное и инструментальное обеспечение флюоресцентной диагностики и фотодинамической терапии // Фотодинамическая терапия и фотодиагностика 2013. Т. 2, № 3. С. 17–25.

[53]

Yang E, Diers JR, Huang YY, et al. Molecular electronic tuning of photosensitizers to enhance photodynamic therapy: synthetic dicyanobacteriochlorins as a case study. Photochem Photobiol. 2013;89(3):605–618. DOI: 10.1111/php.12021

[54]

Yang E., Diers J.R., Huang Y.Y., et al. Molecular electronic tuning of photosensitizers to enhance photodynamic therapy: synthetic dicyanobacteriochlorins as a case study // Photochem Photobiol. 2013. Vol. 89, No. 3. P. 605–618. DOI: 10.1111/php.12021

[55]

Huang P, Lin J, Wang S, et al. Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy. Biomaterials. 2013;34(19):4643–4654. DOI: 10.1016/j.biomaterials.2013.02.063

[56]

Huang P., Lin J., Wang S., et al. Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy // Biomaterials. 2013. Vol. 34, No. 19. P. 4643–4654. DOI: 10.1016/j.biomaterials.2013.02.063

[57]

Wong TW, Aizawa K, Sheyhedin I, et al. Pilot study of topical delivery of monoL-aspartyl chlorin e6 (NPe6): implication of topical NPe6-photodynamic therapy. J Pharmacol Sci. 2003;93(2):136–142. DOI: 10.1254/jphs.93.136

[58]

Wong T.W., Aizawa K., Sheyhedin I., et al. Pilot study of topical delivery of monoL-aspartyl chlorin e6 (NPe6): implication of topical NPe6-photodynamic therapy // J Pharmacol Sci. 2003. Vol. 93, No. 2. P. 136–142. DOI: 10.1254/jphs.93.136

[59]

Alberto ME, Marino T, Quartarolo AD, Russo N. Photophysical origin of the reduced photodynamic therapy activity of temocene compared to Foscan®: insights from theory. Phys Chem Chem Phys. 2013;15(38):16167–16171. DOI: 10.1039/c3cp52698d

[60]

Alberto M.E., Marino T., Quartarolo A.D., Russo N. Photophysical origin of the reduced photodynamic therapy activity of temocene compared to Foscan (R): insights from theory // Phys Chem Chem Phys. 2013. Vol. 15, No. 38. P. 16167–16171. DOI: 10.1039/c3cp52698d

[61]

Friaa O, Maillard P, Brault D. Reaction of the m-THPC triplet state with the antioxidant Trolox and the anesthetic Propofol: modulation of photosensitization mechanisms relevant to photodynamic therapy? Photochem Photobiol Sci. 2012;11(4):703–714. DOI: 10.1039/c2pp05354c

[62]

Friaa O., Maillard P., Brault D. Reaction of the m-THPC triplet state with the antioxidant Trolox and the anesthetic Propofol: modulation of photosensitization mechanisms relevant to photodynamic therapy? // Photochem Photobiol Sci. 2012. Vol. 11, No. 4. P. 703–714. DOI: 10.1039/c2pp05354c

[63]

Goldman MP. Photodynamic therapy. Moscow: Reed Elsiver; 2010. P. 1–13. (In Russ.)

[64]

Голдман М.П. Фотодинамическая терапия. Москва: Рид Элсивер, 2010. С. 1–13.

[65]

Detty MR, Young DN, Williams AJ. A mechanism for heteroatom scrambling in the synthesis of unsymmetrical chalcogenopyrylium dyes. J Org Chem. 1995;60(20):6631–6634. DOI: 10.1021/jo00125a066

[66]

Detty M.R., Young D.N., Williams A.J. A mechanism for heteroatom scrambling in the synthesis of unsymmetrical chalcogenopyrylium dyes // J Org Chem. 1995. Vol. 60, No. 20. P. 6631–6634. DOI: 10.1021/jo00125a066

[67]

Hayata Y, Kato H, Konaka C, et al. Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer. Chest. 1982;81(3):269–277. DOI: 10.1378/chest.81.3.269

[68]

Hayata Y., Kato H., Konaka C., et al. Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer // Chest. 1982. Vol. 81, No. 3. P. 269–277. DOI: 10.1378/chest.81.3.269

[69]

Kato H, Sakai H, Kawaguchi M, et al. Experiences with Photodynamic Therapy in early gastric Cancer. Oncology Research and Treatment. 1992;15(3):232–237. DOI: 10.1159/000217363

[70]

Kato H., Sakai H., Kawaguchi M., et al. Experiences with photodynamic therapy in early gastric cancer // Oncology Research and Treatment. 1992. Vol. 15, No. 3. P. 232–237. DOI: 10.1159/000217363

[71]

Marcus S. Photodynamic Therapy of Human Cancer. Proc SPIE. 1992;80(6):869–889. DOI: 10.1109/5.149450

[72]

Marcus S. Photodynamic therapy of human cancer // Proc SPIE. 1992. Vol. 80, No. 6. P. 869–889. DOI: 10.1109/5.149450

[73]

Kato H, Kawate N, Kinoshita K, et al. Photodynamic therapy of early-stage lung cancer. Ciba Found Symp. 1989;146:183–194; discussion 195–197. DOI: 10.1002/9780470513842.ch13

[74]

Kato H., Kawate N., Kinoshita K., et al. Photodynamic therapy of early-stage lung cancer // Ciba Found Symp. 1989. Vol. 146. P. 183–194; discussion 195–197.

[75]

Ryabov MV, Stranadko EF. Photodynamic therapy of locally advanced skin cancer. Russian Journal of Biotherapy. 2004;3(2):56–57. (In Russ.)

[76]

Рябов М.В., Странадко Е.Ф. Фотодинамическая терапия местно-распространенного рака кожи // Российский биотерапевтический журнал. 2004. Т. 3, № 2. С. 56–57.

[77]

Betz CS, Rauschning W, Stranadko EP, et al. Long-term outcomes following Foscan®-PDT of basal cell carcinomas. Lasers Surg Med. 2012;44(7):533–540. DOI: 10.1002/lsm.22056

[78]

Betz C.S., Rauschning W., Stranadko E.P., et al. Long-term outcomes following Foscan®-PDT of basal cell carcinomas // Lasers Surg Med. 2012. Vol. 44, No. 7. P. 533–540. DOI: 10.1002/lsm.22056

[79]

Rumyantseva VD, Mironov AF, Shamkhalov KS, et al. Ytterbium-porphyrine complexes as promising markers for tumour infra-red luminescence diagnostics. Laser Medicine. 2010;14(1):20–25. (In Russ.)

[80]

Румянцева В.Д., Миронов А.Ф., Щамхалов К.С., и др. Иттербиевые комплексы порфиринов — перспективные маркеры для люминесцентной диагностики опухолей в ИК-диапазоне // Лазерная медицина. 2010. Т. 14, № 1. С. 20–25.

[81]

Stranadko EF. Experimental and clinical development of a method for laser photodynamic therapy of malignant tumors using domestic photosensitizers of the first and second generation. Laser Market. 1994;11:20–26. (In Russ.)

[82]

Странадко Е.Ф. Экспериментально-клиническая разработка метода лазерной фотодинамической терапии злокачественных опухолей с использованием отечественных фотосенсибилизаторов первого и второго поколения // Лазер-маркет 1994. Т. 11. С. 20–26.

[83]

Volgin VN, Stranadko EF, Sokolova TV, et al. Optimization of photodynamic therapy for basal cell skin cancer with photosensitivity. Laser Medicine. 2007;11:50–54. (In Russ.)

[84]

Волгин В.Н., Странадко Е.Ф., Соколова Т.В., и др. Оптимизация режимов фотодинамической терапии базальноклеточного рака кожи с фотосенсом // Лазерная медицина 2007. Т. 11. С. 50–54.

[85]

Chissov VI, Starinsky VV, Petrova GV, Editors. Zlokachestvennye novoobrazovaniya v Rossii v 2007 godu (zabolevaemost’ i smertnost’). Moscow: MNIOI im. P.A. Gertsena Rosmedtekhnologii; 2009. 242 p. (In Russ.)

[86]

Злокачественные новообразования в России в 2007 году (заболеваемость и смертность) / под ред. В.И. Чиссовой, В.В. Старинского, Г.В. Петровой. Москва: МНИОИ им. П.А. Герцена Росмедтехнологий, 2009. 242 c.

[87]

Yaitsky NA, Gerasin VA, Orlov SV. Photodynamic therapy in the treatment of lung cancer. Grekov’s Bulletin of Surgery. 2010; 169: 31–34. (In Russ.)

[88]

Яицкий Н.А., Герасин В.А., Орлов С.В. Фотодинамическая терапия в лечении рака легкого // Вестник хирургии им. И.И. Грекова 2010. Т. 169, № 5. С. 31–34.

[89]

Stranadko EPh, Mazurin VS, Shabarov VL. Photodynamic therapy in esophageal cancer. Photodiag Photodyn Ther. 2010;7(S1):S7–S8. DOI: 10.1016/S1572-1000(10)70022-3

[90]

Stranadko E.Ph., Mazurin V.S., Shabarov V.L. Photodynamic therapy in esophageal cancer // Photodiag Photodyn Ther. 2010. Vol. 7, No. S1. P. S7–S8. DOI: 10.1016/S1572-1000(10)70022-3

[91]

Stranadko EF, Lobakov AI, Vasilenko YuV, et al. Fotodinamicheskaya terapiya raka bol’shogo duodenal’nogo sosochka i terminal’nogo otdela obshchego zhelchnogo protoka. Vestnik Moskovskogo Onkologicheskogo Obshchestva. 2007;4:5–6. (In Russ.)

[92]

Странадко Е.Ф., Лобаков А.И., Василенко Ю.В., и др. Фотодинамическая терапия рака большого дуоденального сосочка и терминального отдела общего желчного протока // Вестник Московского онкологического общества 2007. Т. 4. С. 5–6.

[93]

Titova VA. The role of photodynamic therapy in multimodality cancer treatment. Fotodinamicheskaya Terapiya i Fotodiagnostika. 2012;1:3–5. (In Russ.)

[94]

Титова В.А. Роль и место фотодинамической терапии в мультимодальных программах лечения злокачественных опухолей // Фотодинамическая терапия и фотодиагностика 2012. Т. 1, № 1. С. 3–5. DOI: 10.24931/2413-9432-2012-1-1-3-5

[95]

Geynits AV, Mustafajev RD, Tikhov GV. Photodynamic therapy in treating peritonitis (experimental study). Photodiag Photodyn Ther. 2012;9(S1):S26–S27. DOI: 10.1016/S1572-1000(12)70079-0

[96]

Geynits A.V., Mustafajev R.D., Tikhov G.V. Photodynamic therapy in treating peritonitis (experimental study) // Photodiag Photodyn Ther. 2012. Vol. 9, No. S1. P. S26–S27. DOI: 10.1016/S1572-1000(12)70079-0

[97]

Overholt BF, Panjehpour M. Barrett’s esophagus: photodynamic therapy for ablation of dysplasia, reduction of specialized mucosa, and treatment of superficial esophageal cancer. Gastrointest Endosc. 1995;42(1):64–70. DOI: 10.1016/s0016-5107(95)70246-6

[98]

Overholt B.F., Panjehpour M. Barrett’s esophagus: photodynamic therapy for ablation of dysplasia, reduction of specialized mucosa, and treatment of superficial esophageal cancer // Gastrointest Endosc. 1995. Vol. 42, No. 1. P. 64–70. DOI: 10.1016/s0016-5107(95)70246-6

[99]

Prasad GA, Wang KK, Buttar NS, et al. Predictors of stricture formation after photodynamic therapy for high-grade dysplasia in Barrett’s esophagus. Gastrointest Endosc. 2007;65(1):60–66. DOI: 10.1016/j.gie.2006.04.028

[100]

Prasad G.A., Wang K.K., Buttar N.S., et al. Predictors of stricture formation after photodynamic therapy for high-grade dysplasia in Barrett’s esophagus // Gastrointest Endosc. 2007. Vol. 65, No. 1. P. 60–66. DOI: 10.1016/j.gie.2006.04.028

[101]

Peters F, Kara M, Rosmolen W, et al. Poor results of 5-aminolevulinic acid-photodynamic therapy for residual high-grade dysplasia and early cancer in barrett esophagus after endoscopic resection. Endoscopy. 2005;37(5):418–424. DOI: 10.1055/s-2005-861198

[102]

Peters F., Kara M., Rosmolen W., et al. Poor results of 5-aminolevulinic acid-photodynamic therapy for residual high-grade dysplasia and early cancer in barrett esophagus after endoscopic resection // Endoscopy. 2005. Vol. 37, No. 5. P. 418–424. DOI: 10.1055/s-2005-861198

[103]

Overholt BF, Lightdale CJ, Wang KK, et al. International Photodynamic Group for High-Grade Dysplasia in Barrett’s Esophagus. Photodynamic therapy with porfimer sodium for ablation of high-grade dysplasia in Barrett’s esophagus: international, partially blinded, randomized phase III trial. Gastrointest Endosc. 2005;62(4):488–498. DOI: 10.1016/j.gie.2005.06.047 Erratum in: Gastrointest Endosc. 2006;63(2):359.

[104]

Overholt B.F., Lightdale C.J., Wang K.K., et al. International Photodynamic Group for High-Grade Dysplasia in Barrett’s Esophagus. Photodynamic therapy with porfimer sodium for ablation of high-grade dysplasia in Barrett’s esophagus: international, partially blinded, randomized phase III trial // Gastrointest Endosc. 2005. Vol. 62, No. 4. P. 488–498. DOI: 10.1016/j.gie.2005.06.047 Erratum in: Gastrointest Endosc. 2006. Vol. 63, No. 2. P. 359.

[105]

Overholt BF, Wang KK, Burdick JS, et al. International Photodynamic Group for High-Grade Dysplasia in Barrett’s Esophagus. Five-year efficacy and safety of photodynamic therapy with Photofrin in Barrett’s high-grade dysplasia. Gastrointest Endosc. 2007;66(3):460–468. DOI: 10.1016/j.gie.2006.12.037

[106]

Overholt B.F., Wang K.K., Burdick J.S., et al. International Photodynamic Group for High-Grade Dysplasia in Barrett’s Esophagus. Five-year efficacy and safety of photodynamic therapy with Photofrin in Barrett’s high-grade dysplasia // Gastrointest Endosc. 2007. Vol. 66, No. 3. P. 460–468. DOI: 10.1016/j.gie.2006.12.037 Epub 2007 Jul 23. PMID: 17643436.

[107]

Barr H, Shepherd NA, Dix A, et al. Eradication of high-grade dysplasia in columnar-lined (Barrett’s) oesophagus by photodynamic therapy with endogenously generated protoporphyrin IX. Lancet. 1996;348(9027):584–585. DOI: 10.1016/s0140- 6736(96)03054-1

[108]

Barr H., Shepherd N.A., Dix A., et al. Eradication of high-grade dysplasia in columnar-lined (Barrett’s) oesophagus by photodynamic therapy with endogenously generated protoporphyrin IX // Lancet. 1996. Vol. 348, No. 9027. P. 584–585. DOI: 10.1016/s0140- 6736(96)03054-1

[109]

Mackenzie GD, Jamieson NF, Novelli MR, et al. How light dosimetry influences the efficacy of photodynamic therapy with 5-aminolaevulinic acid for ablation of high-grade dysplasia in Barrett’s esophagus. Lasers Med Sci. 2008;23(2):203–210. DOI: 10.1007/s10103-007-0473-7

[110]

Mackenzie G.D., Jamieson N.F., Novelli M.R., et al. How light dosimetry influences the efficacy of photodynamic therapy with 5-aminolaevulinic acid for ablation of high-grade dysplasia in Barrett’s esophagus // Lasers Med Sci. 2008. Vol. 23, No. 2. P. 203–210. DOI: 10.1007/s10103-007-0473-7

[111]

Sokolov VV. Barretts esophagus (be) and early be cancer: effectiveness of various techniques in endoscopic treatment. Laser Medicine. 2011;15(2):44. (In Russ.)

[112]

Соколов В.В. Пищевод Барретта (ПБ) и ранний рак ПБ: эффективность различных методов эндоскопического лечения // Лазерная медицина. 2011. Т. 15, № 2. С. 44.

[113]

Sloeva AI, Ashurov ZM, Isaev VM, et al. Some aspects of the use of photodynamic therapy in patients with respiratory papillomatosis. Doctor-Ru. 2004:19. (In Russ.)

[114]

Слоева А.И., Ашуров З.М., Исаев В.М., и др. Некоторые аспекты применения фотодинамической терапии у больных с респираторным папилломатозом // Доктор-Ру — журнал современной медицины. Отоларингология. 2004. С. 19.

[115]

Rostovtsev NM, Privalov VA, Kotlyarov AN, Makhalov AA. Primenenie radokhlorina pri fotodinamicheskoi terapii zabolevanii razlichnoi etiologii u detei. Pediatricheskii vestnik Yuzhnogo Urala. 2012;1:106–107. (In Russ.)

[116]

Ростовцев Н.М., Привалов В.А., Котляров А.Н., Махалов А.А. Применение радохлорина при фотодинамической терапии заболеваний различной этиологии у детей // Педиатрический вестник южного Урала 2012. Т. 1. С. 106–107.

[117]

Moreno-Arrones OM, Perez-Garcia B. Nevus sebaceus on the face: Experience with photodynamic therapy in adults and children. Indian J Dermatol Venereol Leprol. 2019;85(4):440. DOI: 10.4103/ijdvl.IJDVL_1162_16

[118]

Moreno-Arrones O.M., Perez-Garcia B. Nevus sebaceus on the face: Experience with photodynamic therapy in adults and children // Indian J Dermatol Venereol Leprol. 2019. Vol. 85, No. 4. P. 440. DOI: 10.4103/ijdvl.IJDVL_1162_16

[119]

Seitz G, Warmann SW, Armeanu S, et al. In vitro photodynamic therapy of childhood rhabdomyosarcoma. Int J Oncol. 2007;30(3):615–620.

[120]

Seitz G., Warmann S.W., Armeanu S., et al. In vitro photodynamic therapy of childhood rhabdomyosarcoma // Int J Oncol. 2007. Vol. 30, No. 3. P. 615–620.

[121]

Seitz G, Krause R, Fuchs J, et al. In vitro photodynamic therapy in pediatric epithelial liver tumors promoted by hypericin. Oncol Rep. 2008;20(5):1277–1282.

[122]

Seitz G., Krause R., Fuchs J., et al. In vitro photodynamic therapy in pediatric epithelial liver tumors promoted by hypericin // Oncol Rep. 2008. Vol. 20, No. 5. P. 1277–1282.

[123]

Chen M, Xie J, Han J. Photodynamic therapy of condyloma acuminatum in a child. Pediatr Dermatol. 2010;27(5):542–544. DOI: 10.1111/j.1525-1470.2010.01279.x

[124]

Chen M., Xie J., Han J. Photodynamic therapy of condyloma acuminatum in a child // Pediatr Dermatol. 2010. Vol. 27, No. 5. P. 542–544. DOI: 10.1111/j.1525-1470.2010.01279.x

[125]

Kumar N, Warren CB. Photodynamic therapy for dermatologic conditions in the pediatric population: a literature review. Photodermatol Photoimmunol Photomed. 2017;33(3):125–134. DOI: 10.1111/phpp.12296

[126]

Kumar N., Warren C.B. Photodynamic therapy for dermatologic conditions in the pediatric population: a literature review // Photodermatol Photoimmunol Photomed. 2017. Vol. 33, No. 3. P. 125–134. DOI: 10.1111/phpp.12296 Epub 2017 Mar 17. PMID: 28130791.

[127]

Fekrazad R, Seraj B, Chiniforush N, et al. Effect of antimicrobial photodynamic therapy on the counts of salivary Streptococcus mutans in children with severe early childhood caries. Photodiagnosis Photodyn Ther. 2017;18:319–322. DOI: 10.1016/j.pdpdt.2017.03.007

[128]

Fekrazad R., Seraj B., Chiniforush N., et al. Effect of antimicrobial photodynamic therapy on the counts of salivary Streptococcus mutans in children with severe early childhood caries // Photodiagnosis Photodyn Ther. 2017. Vol. 18. P. 319–322. DOI: 10.1016/j.pdpdt.2017.03.007 Epub 2017 Mar 27. PMID: 28359938.

[129]

Bargrizan M, Fekrazad R, Goudarzi N, Goudarzi N. Effects of antibacterial photodynamic therapy on salivary mutans streptococci in 5- to 6-year-olds with severe early childhood caries. Lasers Med Sci. 2019;34(3):433–440. DOI: 10.1007/s10103-018-2650-2

[130]

Fekrazad R., Seraj B., Chiniforush N., et al. Effect of antimicrobial photodynamic therapy on the counts of salivary Streptococcus mutans in children with severe early childhood caries // Photodiagnosis Photodyn Ther. 2017. Vol. 18. P. 319–322. DOI: 10.1016/j.pdpdt.2017.03.007

[131]

Ribeiro da Silva VC, da Motta Silveira FM, Barbosa Monteiro MG, et al. Photodynamic therapy for treatment of oral mucositis: Pilot study with pediatric patients undergoing chemotherapy. Photodiagnosis Photodyn Ther. 2018;21:115–120. DOI: 10.1016/j.pdpdt.2017.11.010

[132]

Ribeiro da Silva V.C., da Motta Silveira F.M., Barbosa Monteiro M.G., et al. Photodynamic therapy for treatment of oral mucositis: Pilot study with pediatric patients undergoing chemotherapy // Photodiagnosis Photodyn Ther. 2018. Vol. 21. P. 115–120. DOI: 10.1016/j.pdpdt.2017.11.010

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/