Antibacterial activity and biocompatibility of titanium nickelide augments with the addition of silver nanoparticles for bone grafting: an experimental study

Semyon A. Borisov , Ivan I. Gordienko , Natalya A. Tsap , Gulsharat A. Baigonakova , Ekaterina S. Marchenko , Victor A. Larikov

Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care ›› 2024, Vol. 14 ›› Issue (1) : 21 -31.

PDF
Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care ›› 2024, Vol. 14 ›› Issue (1) : 21 -31. DOI: 10.17816/psaic1566
Original Study Articles
research-article

Antibacterial activity and biocompatibility of titanium nickelide augments with the addition of silver nanoparticles for bone grafting: an experimental study

Author information +
History +
PDF

Abstract

BACKGROUND: The relevance of this study was supported by the increasing number of infectious complications of bone augmentation in children and adults. Currently, porous titanium nickelide alloys are among the most preferred materials used in bone plasty. Despite the observable advantages of porous nickelide titanium alloys in terms of biochemical and biomechanical compatibility with the body, research on the antibacterial activity of alloys is ongoing to counter the development of infections at the implant–biological tissue border.

AIM: To perform an experimental study of the biocompatible antibacterial surface in porous titanium nickelide alloys with the addition of silver nanoparticles.

MATERIALS AND METHODS: Titanium nickelide alloys with 62% porosity were obtained using the self-propagating high-temperature synthesis method from nickel, titanium, and nanosilver powders at concentrations of 0.2 at.% Ag, 0.5 at.% Ag, and 1.0 at.% Ag, respectively. The experiment was conducted on nine sexually mature female white laboratory rats. They were divided into three groups, with three rats each. All animals were implanted with titanium nickelide along with porous granules of silver additives. The first group was the control, the second received 0.2 at.% silver, and the third received 0.5% silver. The standard method of incubating Staphylococcus epidermidis in liquid broth in the presence of the studied images was used to determine bactericidal activity, followed by seeding on solid media and counting colonies.

RESULTS: The antibacterial effect of the samples on S. epidermidis gradually increased with increasing silver concentration. The significance of the differences between the experiment and control was confirmed by Student’s criterion p < 0.005, whereas the sample without silver nanoparticles and the control do not differ significantly. Thus, these alloys may have bioactive properties because they contain silver nanoparticles. An alloy with a silver concentration of 0.5 at.% Ag showed the best antibacterial activity to S. epidermidis. In the clinical evaluation of the results of the experimental study, purulent inflammatory complications were not observed in all animals at all times. On day 75, the animals underwent computed tomography, which showed good occupancy of the bone defect and absence of a dystrophic effect on the area where the bone and soft tissue are in contact with the material.

CONCLUSIONS: If the concentration of silver nanoparticles is increased up to 0.5 at%, the antibacterial activity and cytocompatibility of the implant also increase. Clinical experimental evaluation in all groups of animals showed that osteointegration of alloys with 0.5 at.% Ag begins immediately after implantation and is completed 2 weeks earlier than that in the remaining groups.

Keywords

bone augments / titanium nickelide (TiNi) / silver nanoparticles / bone grafting / laboratory animals / experiment

Cite this article

Download citation ▾
Semyon A. Borisov, Ivan I. Gordienko, Natalya A. Tsap, Gulsharat A. Baigonakova, Ekaterina S. Marchenko, Victor A. Larikov. Antibacterial activity and biocompatibility of titanium nickelide augments with the addition of silver nanoparticles for bone grafting: an experimental study. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care, 2024, 14(1): 21-31 DOI:10.17816/psaic1566

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bozic KJ, Ries MD. The impact of infection after total hip arthroplasty on hospital and surgeon resource utilization. J Bone Joint Surg Am. 2005;87(8):1746–1751. doi: 10.2106/JBJS.D.02937

[2]

Bozic K.J., Ries M.D. The impact of infection after total hip arthroplasty on hospital and surgeon resource utilization // J Bone Joint Surg Am. 2005. Vol. 87, N. 8. P. 1746–1751. doi: 10.2106/JBJS.D.02937

[3]

Bozic KJ, Ries MD. The impact of infection after total hip arthroplasty on hospital and surgeon resource utilization. J Bone Joint Surg Am. 2005;87(8):1746–1751. doi: 10.2106/JBJS.D.02937

[4]

Khon VE, Zagorodniy NV, Komlev VS, et al. Nfluence of the degree of calcium substitution by argentum in tricalcium phosphate on its biological properties in vitro. N.N. Priorov journal of traumatology and orthopedics. 2013;20(4):23–28. EDN: RTKACB

[5]

Хон В.Э., Загородний Н.В., Комлев В.С., и др. Влияние степени замещения кальция серебром в трикальцийфосфате на его биологические свойства in vitro // Вестник травматологии и ортопедии им. Н.Н. Приорова. 2013. Т. 20, № 4. С. 23–28. EDN: RTKACB

[6]

Khon VE, Zagorodniy NV, Komlev VS, et al. Nfluence of the degree of calcium substitution by argentum in tricalcium phosphate on its biological properties in vitro. N.N. Priorov journal of traumatology and orthopedics. 2013;20(4):23–28. EDN: RTKACB

[7]

Czyzewski K, Galazka P, Zalas-Wiecek P, et al. Infectious complications in children with malignant bone tumors: a multicenter nationwide study. Infect Drug Resist. 2019;30(12):1471–1480. doi: 10.2147/IDR.S199657

[8]

Czyzewski K., Galazka P., Zalas-Wiecek P., et al. Infectious complications in children with malignant bone tumors: a multicenter nationwide study // Infect Drug Resist. 2019. Vol. 30, N. 12. P. 1471–1480. doi: 10.2147/IDR.S199657

[9]

Czyzewski K, Galazka P, Zalas-Wiecek P, et al. Infectious complications in children with malignant bone tumors: a multicenter nationwide study. Infect Drug Resist. 2019;30(12):1471–1480. doi: 10.2147/IDR.S199657

[10]

Lake J, Gordon O. Implant-associated spinal infections in children: how can we improvediagnosis and management? Infect Dis Clin North Am. 2022;36(1):101–123. doi: 10.1016/j.idc.2021.11.005

[11]

Lake J., Gordon O. Implant-associated spinal infections in children: how can we improvediagnosis and management? // Infect Dis Clin North Am. 2022. Vol. 36, N. 1. P. 101–123. doi: 10.1016/j.idc.2021.11.005

[12]

Lake J, Gordon O. Implant-associated spinal infections in children: how can we improvediagnosis and management? Infect Dis Clin North Am. 2022;36(1):101–123. doi: 10.1016/j.idc.2021.11.005

[13]

Yasenchuk YuF, Gyunter SV, Marchenko ES, Iuzhakov MM. Biocompatibility of porous SHS-TiNi. Mater Sci Forum. 2019;970(12):320–327. doi: 10.4028/www.scientific.net/MSF.970.320

[14]

Yasenchuk Yu.F., Gyunter S.V., Marchenko E.S., Iuzhakov M.M. Biocompatibility of porous SHS-TiNi // Mater Sci Forum. 2019. Vol. 970, N. 12. P. 320–327. doi: 10.4028/www.scientific.net/MSF.970.320

[15]

Yasenchuk YuF, Gyunter SV, Marchenko ES, Iuzhakov MM. Biocompatibility of porous SHS-TiNi. Mater Sci Forum. 2019;970(12):320–327. doi: 10.4028/www.scientific.net/MSF.970.320

[16]

Topolnitskiy E, Chekalkin T, Marchenko E, et al. Evaluation of clinical performance of TiNi-based implants used in chest wall repair after resection for malignant tumors. J Funct Biomater. 2021;12(4):60–71. doi: 10.3390/jfb12040060

[17]

Topolnitskiy E., Chekalkin T., Marchenko E., et al. Evaluation of clinical performance of TiNi-based implants used in chest wall repair after resection for malignant tumors // J Funct Biomater. 2021. Vol. 12, N. 4. P. 60–71. doi: 10.3390/jfb12040060

[18]

Topolnitskiy E, Chekalkin T, Marchenko E, et al. Evaluation of clinical performance of TiNi-based implants used in chest wall repair after resection for malignant tumors. J Funct Biomater. 2021;12(4):60–71. doi: 10.3390/jfb12040060

[19]

Sevilla P, Aparicio C, Planell JA, Gil FJ. Comparison of the mechanical properties between tantalum and nickel-titanium foams implant materials for bone ingrowth applications. J Alloys Compd. 2007;439(1-2):67–73. doi: 10.1016/j.jallcom.2006.08.069

[20]

Sevilla P., Aparicio C., Planell J.A., Gil F.J. Comparison of the mechanical properties between tantalum and nickel-titanium foams implant materials for bone ingrowth applications // J Alloys Compd. 2007. Vol. 439, N. 1-2. P. 67–73. doi: 10.1016/j.jallcom.2006.08.069

[21]

Sevilla P, Aparicio C, Planell JA, Gil FJ. Comparison of the mechanical properties between tantalum and nickel-titanium foams implant materials for bone ingrowth applications. J Alloys Compd. 2007;439(1-2):67–73. doi: 10.1016/j.jallcom.2006.08.069

[22]

Hornbogen E. Microstructure and thermo-mechanical properties of NiTi shape memory alloys. Mater Sci Forum. 2004;455(2):335–341. doi: 10.4028/www.scientific.net/MSF.455-456.335

[23]

Hornbogen E. Microstructure and thermo-mechanical properties of NiTi shape memory alloys // Mater Sci Forum. 2004. Vol. 455, N. 2. P. 335–341. doi: 10.4028/www.scientific.net/MSF.455-456.335

[24]

Hornbogen E. Microstructure and thermo-mechanical properties of NiTi shape memory alloys. Mater Sci Forum. 2004;455(2):335–341. doi: 10.4028/www.scientific.net/MSF.455-456.335

[25]

Marchenko ES, Luchsheva V, Baigonakova GA, et al. Functionalization of the surface of porous nickel-titanium alloy with macrocyclic compounds. Materials. 2022;16(1):66–78. doi: 10.3390/ma16010066

[26]

Marchenko E.S., Luchsheva V., Baigonakova G.A., et al. Functionalization of the surface of porous nickel-titanium alloy with macrocyclic compounds // Materials. 2022. Vol. 16, N. 1. P. 66–78. doi: 10.3390/ma16010066

[27]

Marchenko ES, Luchsheva V, Baigonakova GA, et al. Functionalization of the surface of porous nickel-titanium alloy with macrocyclic compounds. Materials. 2022;16(1):66–78. doi: 10.3390/ma16010066

[28]

Marchenko ES, Baigonakova GA, Yasenchuk YF, et al. Structure, biocompatibility and corrosion resistance of the ceramic-metal surface of porous nitinol. Ceram Int. 2022;48(22):33514–33523. doi: 10.1016/j.ceramint.2022.07.296

[29]

Marchenko E.S., Baigonakova G.A., Yasenchuk Y.F., et al. Structure, biocompatibility and corrosion resistance of the ceramic-metal surface of porous nitinol // Ceram Int. 2022. Vol. 48, N. 22. P. 33514–33523. doi: 10.1016/j.ceramint.2022.07.296

[30]

Marchenko ES, Baigonakova GA, Yasenchuk YF, et al. Structure, biocompatibility and corrosion resistance of the ceramic-metal surface of porous nitinol. Ceram Int. 2022;48(22):33514–33523. doi: 10.1016/j.ceramint.2022.07.296

[31]

Oh K-T, Joo U-H, Park G-H, et al. Effect of silver addition on the properties of nickel-titanium alloys for dental application. J Biomed Mater. 2006;76B(12):306–314. doi: 10.1002/jbm.b.30369

[32]

Oh K.-T., Joo U.-H., Park G.-H., et al. Effect of silver addition on the properties of nickel-titanium alloys for dental application // J Biomed Mater. 2006. Vol. 76B, N. 12. P. 306–314. doi: 10.1002/jbm.b.30369

[33]

Oh K-T, Joo U-H, Park G-H, et al. Effect of silver addition on the properties of nickel-titanium alloys for dental application. J Biomed Mater. 2006;76B(12):306–314. doi: 10.1002/jbm.b.30369

[34]

Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. J Biomed Mater Res. 2009;91(1):470–480. doi: 10.1002/jbm.b.31463

[35]

Zhao L., Chu P.K., Zhang Y., Wu Z. Antibacterial coatings on titanium implants // J Biomed Mater Res. 2009. Vol. 91, N. 1. P. 470–480. doi: 10.1002/jbm.b.31463

[36]

Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. J Biomed Mater Res. 2009;91(1):470–480. doi: 10.1002/jbm.b.31463

[37]

Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudré C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta biomaterialia. 2019;83(1):37–54. doi: 10.1016/j.actbio.2018.10.036

[38]

Chouirfa H., Bouloussa H., Migonney V., Falentin-Daudré C. Review of titanium surface modification techniques and coatings for antibacterial applications // Acta biomaterialia. 2019. Vol. 83, N. 1. P. 37–54. doi: 10.1016/j.actbio.2018.10.036

[39]

Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudré C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta biomaterialia. 2019;83(1):37–54. doi: 10.1016/j.actbio.2018.10.036

[40]

Ferraris S, Spriano S. Antibacterial titanium surfaces for medical implants. Mater Sci Eng. 2016;61(2):965–978. doi: 10.1016/j.msec.2015.12.062

[41]

Ferraris S., Spriano S. Antibacterial titanium surfaces for medical implants // Mater Sci Eng. 2016. Vol. 61, N. 2. P. 965–978. doi: 10.1016/j.msec.2015.12.062

[42]

Ferraris S, Spriano S. Antibacterial titanium surfaces for medical implants. Mater Sci Eng. 2016;61(2):965–978. doi: 10.1016/j.msec.2015.12.062

[43]

Schmidt-Braekling T, Streitbuerger A, Gosheger G, et al. Silver-coated megaprostheses: review of the literature. Eur J Orthop Surg Traumatol. 2017;27(4):483–489. doi: 10.1007/s00590-017-1933-9

[44]

Schmidt-Braekling T., Streitbuerger A., Gosheger G., et al. Silver-coated megaprostheses: review of the literature // Eur J Orthop Surg Traumatol. 2017. Vol. 27, N. 4. P. 483–489. doi: 10.1007/s00590-017-1933-9

[45]

Schmidt-Braekling T, Streitbuerger A, Gosheger G, et al. Silver-coated megaprostheses: review of the literature. Eur J Orthop Surg Traumatol. 2017;27(4):483–489. doi: 10.1007/s00590-017-1933-9

[46]

Liu X, Gan K, Liu H, et al. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering. Dent Mater. 2017;33(9):348–360. doi: 10.1016/j.dental.2017.06.014

[47]

Liu X., Gan K., Liu H., et al. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering // Dent Mater. 2017. Vol. 33, N. 9. P. 348–360. doi: 10.1016/j.dental.2017.06.014

[48]

Liu X, Gan K, Liu H, et al. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering. Dent Mater. 2017;33(9):348–360. doi: 10.1016/j.dental.2017.06.014

[49]

Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine, nanotechnology, biology, and medicine. 2007;3(1):95–101. doi: 10.1016/j.nano.2006.12.001

[50]

Kim J.S., Kuk E., Yu K.N., et al. Antimicrobial effects of silver nanoparticles // Nanomedicine, nanotechnology, biology, and medicine. 2007. Vol. 3, N. 1. P. 95–101. doi: 10.1016/j.nano.2006.12.001

[51]

Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine, nanotechnology, biology, and medicine. 2007;3(1):95–101. doi: 10.1016/j.nano.2006.12.001

[52]

Aurore V, Caldana F, Blanchard M, et al. Silver-nanoparticles increase bactericidal activity and radical oxygen responses against bacterial pathogens in human osteoclasts. Nanomedicine. 2018;14(2):601–607. doi: 10.1016/j.nano.2017.11.006

[53]

Aurore V., Caldana F., Blanchard M., et al. Silver-nanoparticles increase bactericidal activity and radical oxygen responses against bacterial pathogens in human osteoclasts // Nanomedicine. 2018. Vol. 14, N. 2. P. 601–607. doi: 10.1016/j.nano.2017.11.006

[54]

Aurore V, Caldana F, Blanchard M, et al. Silver-nanoparticles increase bactericidal activity and radical oxygen responses against bacterial pathogens in human osteoclasts. Nanomedicine. 2018;14(2):601–607. doi: 10.1016/j.nano.2017.11.006

[55]

Praba VL, Kathirvel M, Vallayyachari K, et al Bactericidal effect of silver nanoparticles against mycobacterium tuberculosis. J Bionanosci. 2013;7(3):282–287. doi: 10.1166/jbns.2013.1138

[56]

Praba V.L., Kathirvel M., Vallayyachari K., et al. Bactericidal effect of silver nanoparticles against mycobacterium tuberculosis // J Bionanosci. 2013. Vol. 7, N. 3. P. 282–287. doi: 10.1166/jbns.2013.1138

[57]

Praba VL, Kathirvel M, Vallayyachari K, et al Bactericidal effect of silver nanoparticles against mycobacterium tuberculosis. J Bionanosci. 2013;7(3):282–287. doi: 10.1166/jbns.2013.1138

[58]

Van Dong P, Ha CH, Binh LT, et al. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int Nano Lett. 2012;2(2):9–18. doi: 10.1186/2228-5326-2-9

[59]

Van Dong P., Ha C.H., Binh L.T., et al. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles // Int Nano Lett. 2012. Vol. 2, N. 2. P. 9–18. doi: 10.1186/2228-5326-2-9

[60]

Van Dong P, Ha CH, Binh LT, et al. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int Nano Lett. 2012;2(2):9–18. doi: 10.1186/2228-5326-2-9

[61]

Thangavel E, Dhandapani VS, Dharmalingam K, et al. RF magnetron sputtering mediated NiTi/Ag coating on Ti-alloy substrate with enhanced biocompatibility and durability. Mater Sci Eng. 2019;99(4):304–314. doi: 10.1016/j.msec.2019.01.099

[62]

Thangavel E., Dhandapani V.S., Dharmalingam K., et al. RF magnetron sputtering mediated NiTi/Ag coating on Ti-alloy substrate with enhanced biocompatibility and durability // Mater Sci Eng. 2019. Vol. 99, N. 4. P. 304–314. doi: 10.1016/j.msec.2019.01.099

[63]

Thangavel E, Dhandapani VS, Dharmalingam K, et al. RF magnetron sputtering mediated NiTi/Ag coating on Ti-alloy substrate with enhanced biocompatibility and durability. Mater Sci Eng. 2019;99(4):304–314. doi: 10.1016/j.msec.2019.01.099

[64]

Martinez-Gutierrez F, Olive PL, Banuelos A, et al. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: nanotechnology, biology, and medicine. 2010;6(5):681–688. doi: 10.1016/j.nano.2010.02.001

[65]

Martinez-Gutierrez F., Olive P.L., Banuelos A., et al. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles // Nanomedicine: nanotechnology, biology, and medicine. 2010. Vol. 6, N. 5. P. 681–688. doi: 10.1016/j.nano.2010.02.001

[66]

Martinez-Gutierrez F, Olive PL, Banuelos A, et al. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: nanotechnology, biology, and medicine. 2010;6(5):681–688. doi: 10.1016/j.nano.2010.02.001

[67]

Albers CE, Hofstetter W, Siebenrock KA, et al. In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations. Nanotoxicology. 2013;7(1):30–36. doi: 10.3109/17435390.2011.626538

[68]

Albers C.E., Hofstetter W., Siebenrock K.A., et al. In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations // Nanotoxicology. 2013. Vol. 7, N. 1. P. 30–36. doi: 10.3109/17435390.2011.626538

[69]

Albers CE, Hofstetter W, Siebenrock KA, et al. In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations. Nanotoxicology. 2013;7(1):30–36. doi: 10.3109/17435390.2011.626538

[70]

Marchenko ES, Baigonakova GA, Kokorev OV, et al. Phase equilibrium, structure, mechanical and biocompatible properties of TiNi-based alloy with silver. Mater. Res. Express. 2019;6(6):1–11. doi: 10.1088/2053-1591/ab0edd

[71]

Marchenko E.S., Baigonakova G.A., Kokorev O.V., et al. Phase equilibrium, structure, mechanical and biocompatible properties of TiNi-based alloy with silver // Mater. Res. Express. 2019. Vol. 6, N. 6. P. 1–11. doi: 10.1088/2053-1591/ab0edd

[72]

Marchenko ES, Baigonakova GA, Kokorev OV, et al. Phase equilibrium, structure, mechanical and biocompatible properties of TiNi-based alloy with silver. Mater. Res. Express. 2019;6(6):1–11. doi: 10.1088/2053-1591/ab0edd

[73]

Pauksch L, Rohnke M, Schnettler R, Lips KS. Silver nanoparticles do not alter human osteoclastogenesis but induce cellular uptake. Toxicol Rep. 2014;1(1):900–908. doi: 10.1016/j.toxrep.2014.10.012

[74]

Pauksch L., Rohnke M., Schnettler R., Lips K.S. Silver nanoparticles do not alter human osteoclastogenesis but induce cellular uptake // Toxicol Rep. 2014. Vol. 1, N. 1. P. 900–908. doi: 10.1016/j.toxrep.2014.10.012

[75]

Pauksch L, Rohnke M, Schnettler R, Lips KS. Silver nanoparticles do not alter human osteoclastogenesis but induce cellular uptake. Toxicol Rep. 2014;1(1):900–908. doi: 10.1016/j.toxrep.2014.10.012

[76]

Goodman SB, Yao Z, Keeney M, Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials. 2013;34(13):3174–3183. doi: 10.1016/j.biomaterials.2013.01.074

[77]

Goodman S.B., Yao Z., Keeney M., Yang F. The future of biologic coatings for orthopaedic implants // Biomaterials. 2013. Vol. 34, N. 13. P. 3174–3183. doi: 10.1016/j.biomaterials.2013.01.074

[78]

Goodman SB, Yao Z, Keeney M, Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials. 2013;34(13):3174–3183. doi: 10.1016/j.biomaterials.2013.01.074

[79]

Marchenko E, Baigonakova G, Larikov V, et al. Structure and mechanical properties of porous TiNi alloys with Ag nanoparticles. Coatings. 2023;13(1):24–37. doi: 10.3390/coatings13010024

[80]

Marchenko E., Baigonakova G., Larikov V., et al. Structure and mechanical properties of porous TiNi alloys with Ag nanoparticles // Coatings. 2023. Vol. 13, N. 1. P. 24–37. doi: 10.3390/coatings13010024

[81]

Marchenko E, Baigonakova G, Larikov V, et al. Structure and mechanical properties of porous TiNi alloys with Ag nanoparticles. Coatings. 2023;13(1):24–37. doi: 10.3390/coatings13010024

[82]

Boudreau MD, Imam MS, Paredes AM, et al. Differential effects of silver nanoparticles and silver ions on tissue accumulation, distribution, and toxicity in the sprague dawley rat following daily oral gavage administration for 13 weeks. Toxicol Sci. 2016;150(1):131–160. doi: 10.1093/toxsci/kfv318

[83]

Boudreau M.D., Imam M.S., Paredes A.M., et al. Differential effects of silver nanoparticles and silver ions on tissue accumulation, distribution, and toxicity in the sprague dawley rat following daily oral gavage administration for 13 weeks // Toxicol Sci. 2016. Vol. 150, N. 1. P. 131–160. doi: 10.1093/toxsci/kfv318

[84]

Boudreau MD, Imam MS, Paredes AM, et al. Differential effects of silver nanoparticles and silver ions on tissue accumulation, distribution, and toxicity in the sprague dawley rat following daily oral gavage administration for 13 weeks. Toxicol Sci. 2016;150(1):131–160. doi: 10.1093/toxsci/kfv318

[85]

Guo H, Zhang J, Boudreau M, et al. Intravenous administration of silver nanoparticles causes organ toxicity through intracellular ROS-related loss of inter-endothelial junction. Part Fibre Toxicol. 2016;13(3):21–33. doi: 10.1186/s12989-016-0133-99

[86]

Guo H., Zhang J., Boudreau M., et al. Intravenous administration of silver nanoparticles causes organ toxicity through intracellular ROS-related loss of inter-endothelial junction // Part Fibre Toxicol. 2016. Vol. 13, N. 3. P. 21–33. doi: 10.1186/s12989-016-0133-9

[87]

Guo H, Zhang J, Boudreau M, et al. Intravenous administration of silver nanoparticles causes organ toxicity through intracellular ROS-related loss of inter-endothelial junction. Part Fibre Toxicol. 2016;13(3):21–33. doi: 10.1186/s12989-016-0133-99

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/