Respiratory parameters as a predictor of hospital outcomes in newborns requiring medical evacuation

Rustam F. Mukhametshin , Olga P. Kovtun , Nadezhda S. Davydova

Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care ›› 2022, Vol. 12 ›› Issue (4) : 441 -452.

PDF
Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care ›› 2022, Vol. 12 ›› Issue (4) : 441 -452. DOI: 10.17816/psaic1292
Original Study Articles
research-article

Respiratory parameters as a predictor of hospital outcomes in newborns requiring medical evacuation

Author information +
History +
PDF

Abstract

BACKGROUND: Assessment of the clinical condition, prediction of risks and possible outcomes during the transfer of newborns remains an important part of the work of transport teams. Respiratory disorders remain a significant indication for transfer to medical organizations of a higher level of care.

AIM: To study the predictive value of the parameters of respiratory support in newborns requiring medical evacuation for the outcomes of treatment.

MATERIALS AND METHODS: The observational, cohort, retrospective study included data from neonatal to patients on ventilators (286 newborns) in the period from August 1, 2017 to December 31, 2018. Anamnesis parameters, intensive care volume, respiratory support settings, and assessments on scales (KSHONN, NTISS, TRIPS) were evaluated. Analyzed: 24-hours mortality, 7 days mortality, hospital mortality, air leakage syndrome. The assessment and comparison of the predictive value of the parameters in relation to the hospital outcomes was performed.

RESULTS: The AUC ROC of SpO2/FiO2 for predicting 24-hours mortality was 0.984 [0.966–1.000], which is significantly higher than the ROC of the saturation oxygenation index (AUC 0.972 [0.949–0.995], p = 0.004). The area under the ROC of the 24-hours mortality on the TRIPS scale does not significantly differ from the saturation index of oxygenation (AUC 0.972 [0.949–0.995], p = 0.113) and the mean airway pressure (AUC 0.943 [0.884–1.000], p = 0.107). When predicting 7-day mortality, the saturation oxygenation index has AUC ROC (0.702 [0.549–0.854]) significantly lower than AUC ROC for SpO2/FiO2 (0.762 [0.638–0.887], p = 0.001). SpO2/FiO2 predicts total mortality with AUC ROC (0.759 [0.677–0.841]).

CONCLUSIONS: The mean airway pressure, saturation oxygenation index and SpO2/FiO2 have a high (AUC > 0,9) predictive value for 24-hours mortality, while only SpO2/FiO2 reliably predicts total mortality with AUC ROC > 0,7.

Keywords

medical evacuation / Severity of Illness Index / lung ventilation / newborns

Cite this article

Download citation ▾
Rustam F. Mukhametshin, Olga P. Kovtun, Nadezhda S. Davydova. Respiratory parameters as a predictor of hospital outcomes in newborns requiring medical evacuation. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care, 2022, 12(4): 441-452 DOI:10.17816/psaic1292

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gonzalez RM, Gilleskie D. Infant Mortality Rate as a Measure of a Country’s Health: A Robust Method to Improve Reliability and Comparability. Demography. 2017;54(2):701–720. DOI: 10.1007/s13524-017-0553-7

[2]

Gonzalez R.M., Gilleskie D. Infant mortality rate as a measure of a country’s health: a robust method to improve reliability and comparability // Demography. 2017. Vol. 54, No. 2. P. 701–720. DOI: 10.1007/s13524-017-0553-7

[3]

Hentschel R, Guenther K, Vach W, Bruder I. Risk-adjusted mortality of VLBW infants in high-volume versus low-volume NICUs. Arch Dis Child Fetal Neonatal Ed. 2019;104(4):F390-F395. DOI: 10.1136/archdischild-2018-314956

[4]

Hentschel R., Guenther K., Vach W., Bruder I. Risk-adjusted mortality of VLBW infants in high-volume versus low-volume NICUs // Arch Dis Child Fetal Neonatal Ed. 2019. Vol. 104, No. 4. P. F390–F395. DOI: 10.1136/archdischild-2018-314956

[5]

Walther F, Kuester D, Bieber A, et al. Are birth outcomes in low risk birth cohorts related to hospital birth volumes? A systematic review. BMC Pregnancy Childbirth. 202121(1):531. DOI: 10.1186/s12884-021-03988-y

[6]

Walther F., Kuester D., Bieber A., et al. Are birth outcomes in low risk birth cohorts related to hospital birth volumes? A systematic review // BMC Pregnancy Childbirth. 2021. Vol. 21, No. 1. P. 531. DOI: 10.1186/s12884-021-03988-y

[7]

Hossain S, Shah PS, Ye XY, et al.; Canadian Neonatal Network; Australian and New Zealand Neonatal Network. Outborns or Inborns: Where Are the Differences? A Comparison Study of Very Preterm Neonatal Intensive Care Unit Infants Cared for in Australia and New Zealand and in Canada. Neonatology. 2016;109(1):76-84. DOI: 10.1159/000441272

[8]

Hossain S., Shah P.S., Ye X.Y., et al.; Canadian Neonatal Network; Australian and New Zealand Neonatal Network. Outborns or Inborns: Where Are the Differences? A Comparison Study of Very Preterm Neonatal Intensive Care Unit Infants Cared for in Australia and New Zealand and in Canada // Neonatology. 2016. Vol. 109, No. 1. P. 76–84. DOI: 10.1159/000441272

[9]

Gould JB, Danielsen BH, Bollman L, et al. Estimating the quality of neonatal transport in California. Journal of Perinatology. 2013;33(12);964–970. DOI: 10.1038/jp.2013.57

[10]

Gould J. B., Danielsen B. H., Bollman L., et al. Estimating the quality of neonatal transport in California // Journal of Perinatology. 2013. Vol. 33, No. 12. P. 964–970. DOI: 10.1038/jp.2013.57

[11]

Aleksandrovich YuS, Nurmagambetova BK, Pshenisnov KV, Parshin EV. specific features of the course of multiple organ dysfunction syndrome in the full-term and premature neonate. Clinical Practice in Pediatrics. 2009;4(1):19-21.

[12]

Александрович Ю.С., Нурмагамбетова Б.К., Пшениснов К.В., Паршин Е.В. Особенности течения синдрома полиорганной недостаточности у доношенных и недоношенных новорожденных // Вопросы практической педиатрии. 2009. Т. 4, № 1. P. 19–21.

[13]

Proulx F, Joyal JS, Mariscalco MM, et al. The pediatric multiple organ dysfunction syndrome. Pediatr Critical Care Medicine. 2009;10(1):12–22. DOI: 10.1097/PCC.0b013e31819370a9

[14]

Proulx F., Joyal J.S., Mariscalco M.M., et al. The pediatric multiple organ dysfunction syndrome // Pediatr Critical Care Medicine. 2009. Vol. 10, No. 1. P. 12–22. DOI: 10.1097/PCC.0b013e31819370a9

[15]

Hooper SB, Te Pas AB, Lang J, et al. Cardiovascular transition at birth: a physiological sequence. Pediatr Res. 2015;77(5):608-614. DOI: 10.1038/pr.2015.21

[16]

Hooper S.B., Te Pas A.B., Lang J., et al. Cardiovascular transition at birth: a physiological sequence // Pediatr Res. 2015. Vol. 77, No. 5. P. 608–614. DOI: 10.1038/pr.2015.21

[17]

van Kaam AH, Rimensberger PC, Borensztajn D, De Jaegere AP.; Neovent Study Group. Ventilation practices in the neonatal intensive care unit: a crosssectional study. J Pediatr. 2010;157(5):767-771.e1–3.

[18]

van Kaam A.H., Rimensberger P.C., Borensztajn D., De Jaegere A.P. Neovent Study Group. Ventilation practices in the neonatal intensive care unit: a crosssectional study // J Pediatr. 2010. Vol. 157, No. 5. P. 767–771.e1–3.

[19]

Aleksandrovich YuS, Pshenisnov KV, Parshin EV, Nurmagambetova BK. Prediktors multisystem organ failure at the newborns requiring interhospital transportation. Emergency Medical Care. 2008;9(4):29-34.

[20]

Александрович Ю.С., Пшениснов К.В., Паршин Е.В., Нурмагамбетова Б.К. Предикторы полиорганной недостаточности у новорожденных, нуждающихся в межгоспитальной транспортировке // Скорая медицинская помощь. 2008. Т. 9, № 4. P. 29–34.

[21]

Mhanna MJ, Iyer NP, Piraino S, Jain M. Respiratory severity score and extubation readiness in very low birth weight infants. Pediatr Neonatol. 2017;58(6):523–528. DOI: 10.1016/j.pedneo.2016.12.006

[22]

Mhanna M.J., Iyer N.P., Piraino S., Jain M. Respiratory severity score and extubation readiness in very low birth weight infants // Pediatr Neonatol. 2017. Vol. 58, No. 6. P. 523–528. DOI: 10.1016/j.pedneo.2016.12.006

[23]

Aleksandrovich YuS, Pshenisnov KV, Parshin EV, et al. hospital-to-hospital transportation of the newborns with multiple organ insufficiency. Emergency Medical Care. 2009;10(1):9–13.

[24]

Александрович Ю.С., Пшениснов К.В., Паршин Е.В., и др. Межгоспитальная транспортировка новорожденных с полиорганной недостаточностью // Скорая медицинская помощь. 2009. Т. 10, № 1. P. 9–13.

[25]

Rawat M, Chandrasekharan PK, Williams A, et al. Oxygen saturation index and severity of hypoxic respiratory failure. Neonatology. 2015;107(3):161–166. DOI: 10.1159/000369774

[26]

Rawat M., Chandrasekharan P.K., Williams A., et al. Oxygen saturation index and severity of hypoxic respiratory failure // Neonatology. 2015. Vol. 107, No. 3. P. 161–166. DOI: 10.1159/000369774

[27]

Khalesi N, Choobdar FA, Khorasani M, et al. Accuracy of oxygen saturation index in determining the severity of respiratory failure among preterm infants with respiratory distress syndrome. J Matern Fetal Neonatal Med. 2021;34(14):2334–2339. DOI: 10.1080/14767058.2019.1666363

[28]

Khalesi N., Choobdar F.A., Khorasani M., et al. Accuracy of oxygen saturation index in determining the severity of respiratory failure among preterm infants with respiratory distress syndrome // J Matern Fetal Neonatal Med. 2021. Vol. 34, No. 14. P. 2334–2339. DOI: 10.1080/14767058.2019.1666363

[29]

Maneenil G, Premprat N, Janjindamai W, et al. Correlation and Prediction of Oxygen Index from Oxygen Saturation Index in Neonates with Acute Respiratory Failure. Am J Perinatol. 2021. DOI: 10.1055/a-1673-5251

[30]

Maneenil G., Premprat N., Janjindamai W., et al. Correlation and Prediction of Oxygen Index from Oxygen Saturation Index in Neonates with Acute Respiratory Failure // Am J Perinatol. 2021. DOI: 10.1055/a-1673-5251

[31]

Muniraman HK, Song AY, Ramanathan R, et al. Evaluation of Oxygen Saturation Index Compared with Oxygenation Index in Neonates with Hypoxemic Respiratory Failure. JAMA Netw Open. 2019;2(3):e191179. DOI: 10.1001/jamanetworkopen.2019.1179

[32]

Muniraman H.K., Song A.Y., Ramanathan R., et al. Evaluation of Oxygen Saturation Index Compared with Oxygenation Index in Neonates with Hypoxemic Respiratory Failure // JAMA Netw Open. 2019. Vol. 2, No. 3. P. e191179. DOI: 10.1001/jamanetworkopen.2019.1179

[33]

Khemani RG, Rubin S, Belani S, et al. Pulse oximetry vs. PaO2 metrics in mechanically ventilated children: Berlin definition of ARDS and mortality risk. Intensive Care Med. 2015;41(1):94–102. DOI: 10.1007/s00134-014-3486-2

[34]

Khemani R.G., Rubin S., Belani S., et al. Pulse oximetry vs. PaO2 metrics in mechanically ventilated children: Berlin definition of ARDS and mortality risk // Intensive Care Med. 2015. Vol. 41, No. 1. P. 94–102. DOI: 10.1007/s00134-014-3486-2

[35]

Rice TW, Wheeler AP, Bernard GR, et al.; National Institutes of Health, National Heart, Lung, and Blood Institute ARDS Network. Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Chest. 2007;132(2):410–417. DOI: 10.1378/chest.07-0617

[36]

Rice T.W., Wheeler A.P., Bernard G.R., et al.; National Institutes of Health, National Heart, Lung, and Blood Institute ARDS Network. Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS // Chest. 2007. Vol. 132, No. 2. P. 410–417. DOI: 10.1378/chest.07-0617

[37]

Pandharipande PP, Shintani AK, Hagerman HE, et al. Derivation and validation of Spo2/Fio2 ratio to impute for Pao2/Fio2 ratio in the respiratory component of the Sequential Organ Failure Assessment score. Crit Care Med. 2009;37(4):1317–1321. DOI: 10.1097/CCM.0b013e31819cefa9

[38]

Pandharipande P.P., Shintani A.K., Hagerman H.E., et al. Derivation and validation of Spo2/Fio2 ratio to impute for Pao2/Fio2 ratio in the respiratory component of the Sequential Organ Failure Assessment score // Crit Care Med. 2009. Vol. 37, No. 4. P. 1317–1321. DOI: 10.1097/CCM.0b013e31819cefa9

[39]

Lobete Prieto C, Medina Villanueva A, Modesto I, et al. Prediction of PaO2/FiO2 ratio from SpO2/FiO2 ratio adjusted by transcutaneous CO₂ measurement in critically ill children. An Pediatr (Barc). 2011;74(2):91–96. DOI: 10.1016/j.anpedi.2010.09.021

[40]

Lobete Prieto C., Medina Villanueva A., Modesto I., et al. Prediction of PaO2/FiO2 ratio from SpO2/FiO2 ratio adjusted by transcutaneous CO2 measurement in critically ill children // An Pediatr (Barc). 2011. Vol. 74, No. 2. P. 91–96. DOI: 10.1016/j.anpedi.2010.09.021

[41]

Ray S, Rogers L, Pagel C, et al. PaO2/FIO2 Ratio Derived From the SpO2/FIO2 Ratio to Improve Mortality Prediction Using the Pediatric Index of Mortality-3 Score in Transported Intensive Care Admissions. Pediatr Crit Care Med. 2017;18(3):e131–e136. DOI: 10.1097/PCC.0000000000001075

[42]

Ray S., Rogers L., Pagel C., et al. PaO2/FIO2 Ratio Derived From the SpO2/FIO2 Ratio to Improve Mortality Prediction Using the Pediatric Index of Mortality-3 Score in Transported Intensive Care Admissions // Pediatr Crit Care Med. 2017. Vol. 18, No. 3. P. e131–e136. DOI: 10.1097/PCC.0000000000001075

[43]

Carvalho EB, Leite TRS, Sacramento RFM, et al. Rationale and limitations of the SpO2/FiO2 as a possible substitute for PaO2/FiO2 in different preclinical and clinical scenarios. Rev Bras Ter Intensiva. 2022;34(1):185–196. DOI: 10.5935/0103-507X.20220013-pt

[44]

Carvalho E.B., Leite T.R.S., Sacramento R.F.M., et al. Rationale and limitations of the SpO2/FiO2 as a possible substitute for PaO2/FiO2 in different preclinical and clinical scenarios // Rev Bras Ter Intensiva. 2022. Vol. 34, No. 1. P. 185–196. DOI: 10.5935/0103-507X.20220013-pt

[45]

Oygur N, Ongun H, Saka O. Risk prediction using a neonatal therapeutic intervention scoring system in VLBW and ELBW preterm infants. Pediatr Int. 2012;54(4):496–500. DOI: 10.1111/j.1442-200X.2012.03576.x

[46]

Oygur N., Ongun H., Saka O. Risk prediction using a neonatal therapeutic intervention scoring system in VLBW and ELBW preterm infants // Pediatr Int. 2012. Vol. 54, No. 4. P. 496–500. DOI: 10.1111/j.1442-200X.2012.03576.x

[47]

Kovtun OP, Mukhametshin RF, Davydova NS. Assessment of the predictive value of the NTISS scale for neonatal outcomes. Ural Medical Journal. 2021;20(5):11–20. DOI: 10.52420/2071- 5943-2021-20-5-11-20

[48]

Ковтун О.П., Мухаметшин Р.Ф., Давыдова Н.С. Оценка предиктивной ценности шкалы NTISS в отношении исходов у новорожденных // Уральский медицинский журнал. 2021. Т. 20, № 5. С. 11–20. DOI: 10.52420/2071-5943-2021-20-5-11-20

[49]

Karlsson BM, Berg J. Transport risk index of physiologic stability: a validation for Swedish conditions. Journal of Pediatric and Neonatal Individualized Medicine. 2017;6(2):22–23.

[50]

Karlsson B-M., Berg J. Transport risk index of physiologic stability: a validation for Swedish conditions // Journal of Pediatric and Neonatal Individualized Medicine. 2017. Vol. 6, No. 2. P. 22–23.

[51]

Grass B, Ye XY, Kelly E, et al. Association between Transport Risk Index of Physiologic Stability (Trips) in extremely premature infants and mortality or neurodevelopmental impairment at 18 to 24 months. J Pediatr. 2020;224:51–56.e5 DOI: 10.1016/j.jpeds.2020.05.019

[52]

Grass B., Ye X.Y., Kelly E., et al. Association between Transport Risk Index of Physiologic Stability (Trips) in extremely premature infants and mortality or neurodevelopmental impairment at 18 to 24 months // J Pediatr. 2020;224:51–56.e5. DOI: 10.1016/j.jpeds.2020.05.019

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

66

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/