Identification of vehicle directional parameters using the sigma-point Kalman filters
A. V. Chaplygin , I. A. Kulikov
Izvestiya MGTU MAMI ›› 2021, Vol. 15 ›› Issue (3) : 57 -69.
Identification of vehicle directional parameters using the sigma-point Kalman filters
The article discusses the problem of identifying the parameters of the vehicle's directional movement, which are necessary for the operation of active safety systems (SAB). The inability to determine some of the parameters necessary for the functioning of the SAB by direct measurements with on-board sensors (due to the absence of corresponding sensors in production vehicles) makes it relevant to use indirect computational methods for identifying these parameters, which are based on mathematical structures called observers.
The purpose of this work is to create a system for identifying vehicle motion parameters, which, using the measurements available on board the vehicle and the mathematical apparatus of the theory of observers and optimal filters, indirectly determines unmeasured parameters that are important for the operation of active safety systems.
Based on the analysis of existing methods and tools, a diagram of the observer of the parameters of the vehicle's directional movement using the sigma-point Kalman filter is proposed. The observer identifies the lateral component of the vehicle speed vector, the coefficients of the lateral adhesion of the tires to the supporting surface and the wheel slip angles using the vehicle dynamics model and on-board inertial sensors that measure the linear acceleration and yaw rate of the vehicle.
The observer's performance and adequacy was confirmed by comparing the parameters he identifies with direct measurements made during road tests of the vehicle. There was used a root-mean-square error of identification as a measure for assessing the accuracy with respect to direct measurements of the parameters of course movement. An additional assessment of the adequacy is made by comparing the identified grip characteristic (the dependence of the coefficient of adhesion on the slip angle) with the characteristic obtained by approximation using a mathematical model of the tire. The assessment showed a good quality of identification of course movement parameters provided by the developed observer, which gives grounds to consider it a useful tool for research and development of active safety systems.
vehicle directional movement / parameter identification / observer / sigma-point Kalman filter
| [1] |
Winner H., Hakuli S., Lotz F. and Singer C. Handbook of Driver Assistance Systems. Basic Information, Components and Systems for Active Safety and Comfort, Berlin/Heidelberg:Springer International Publishing:, 2016. |
| [2] |
Liu W., He H., Sun F. Vehicle state estimation based on Minimum Model Error criterion combining with Extended Kalman Filter // J. Frankl. Inst. 2016. pp. 834–856. DOI:10.1016/j.jfranklin.2016.01.005 |
| [3] |
Liu W., He H., Sun F. Vehicle state estimation based on Minimum Model Error criterion combining with Extended Kalman Filter //J. Frankl. Inst. 2016. P. 834–856. DOI:10.1016/j.jfranklin.2016.01.005 |
| [4] |
Tsunashima H., Murakami M., Miyataa J. Vehicle and road state estimation using interacting multiple model approach // Veh. Syst. Dyn. 2006. 44. pp. 750–758. DOI: 10.1080/00423110600885772 |
| [5] |
Tsunashima H., Murakami M., Miyataa J. Vehicle and road state estimation using interacting multiple model approach//Veh. Syst. Dyn. 2006. 44. P. 750–758. DOI: 10.1080/00423110600885772 |
| [6] |
Bechtloff J., Ackermann C., Isermann R. Adaptive state observers for driving dynamics – online estimation of tire parameters under real conditions. // In: Pfeffer P. (eds) 6th International Munich Chassis Symposium 2015. Pro-ceedings// Springer Vieweg, Wiesbaden. DOI:10.1007/978-3-658-09711-0_46 |
| [7] |
Bechtloff J., Ackermann C., Isermann R. Adaptive state observers for driving dynamics – online estimation of tire parameters under real conditions. // In: Pfeffer P. (eds) 6th International Munich Chassis Symposium 2015. Proceedings// Springer Vieweg, Wiesbaden. DOI:10.1007/978-3-658-09711-0_46 |
| [8] |
Kalman R.E. A New Approach to Linear Filtering and Prediction Problems // Journal of Basic Engineering. 1960. Vol. 82. pp. 35-45. |
| [9] |
Kalman R.E. A New Approach to Linear Filtering and Prediction Problems // Journal of Basic Engineering. 1960. Vol. 82. P. 35-45. |
| [10] |
Drakunov S. and Utkin V. Sliding mode observers. Tutorial // Proceedings of 1995 34th IEEE Conference on Decision and Control, 1995. pp. 3376-3378. DOI: 10.1109/CDC.1995.479009. |
| [11] |
Drakunov S. and Utkin V. Sliding mode observers. Tutorial // Proceedings of 1995 34th IEEE Conference on Decision and Control, 1995. P. 3376-3378. DOI: 10.1109/CDC.1995.479009. |
| [12] |
Elfring J., E Torta., van de Molengraft R. Particle Filters: A Hands-On Tutorial //Sensors 2021. 21. pp. 438. DOI:10.3390/s21020438 |
| [13] |
Elfring J., E Torta., van de Molengraft R. Particle Filters: A Hands-On Tutorial //Sensors 2021. 21. P. 438. DOI:10.3390/s21020438 |
| [14] |
Jin X., Yin G., Chen N., Advanced estimation techniques for vehicle system dynamic state: A survey // Sensors. 2019. 19(19). DOI: 10.3390/s19194289 |
| [15] |
Jin X., Yin G., Chen N., Advanced estimation techniques for vehicle system dynamic state: A survey// Sensors. 2019. 19(19). DOI: 10.3390/s19194289 |
| [16] |
Nam K., Oh S., Fujimoto H., Hori Y. Estimation of sideslip and roll angles of electric vehicles using lateral tire force sensors through RLS and Kalman filter approaches // IEEE Trans. Ind. Electron. 2012. 60. pp. 988–1000. |
| [17] |
Nam K., Oh S., Fujimoto H., Hori Y. Estimation of sideslip and roll angles of electric vehicles using lateral tire force sensors through RLS and Kalman filter approaches//IEEE Trans. Ind. Electron. 2012. 60. P.988–1000. |
| [18] |
Anderson R., Bevly D.M. Using GPS with a model-based estimator to estimate critical vehicle states // Veh. Syst. Dyn. 2010. 48. pp. 1413–1438. DOI: 10.23919/ACC.2004.1383774 |
| [19] |
Anderson R., Bevly D.M. Using GPS with a model-based estimator to estimate critical vehicle states// Veh. Syst. Dyn. 2010. 48. P.1413–1438. DOI: 10.23919/ACC.2004.1383774 |
| [20] |
Kim J. Effect of vehicle model on the estimation of lateral vehicle dynamics. Int. J. Autom. Technol. 201. 11. pp. 331–337. DOI: 10.1007/s12239-010-0041-1 |
| [21] |
Kim J. Effect of vehicle model on the estimation of lateral vehicle dynamics. Int. J. Autom. Technol. 201. 11. P.331–337. DOI: 10.1007/s12239-010-0041-1 |
| [22] |
Liu W., He H., Sun F. Vehicle state estimation based on Minimum Model Error criterion combining with Extended Kalman Filter // J. Frankl. Inst. 2016. 353. pp. 834–856. DOI: 10.1016/j.jfranklin.2016.01.005 |
| [23] |
Liu W., He H., Sun F. Vehicle state estimation based on Minimum Model Error criterion combining with Extended Kalman Filter//J. Frankl. Inst. 2016. 353. P. 834–856. DOI: 10.1016/j.jfranklin.2016.01.005 |
| [24] |
Zong C., Hu D., Zheng H. Dual extended Kalman filter for combined estimation of vehicle state and road friction // Chin. J. Mech. Eng. 2013. 26. pp. 313–324. DOI: 10.3901/CJME.2013.02.313 |
| [25] |
Zong C., Hu D., Zheng H. Dual extended Kalman filter for combined estimation of vehicle state and road friction// Chin. J. Mech. Eng. 2013. 26. P. 313–324. DOI: 10.3901/CJME.2013.02.313 |
| [26] |
Antonov S., Fehn A., Kugi A. Unscented Kalman filter for vehicle state estimation // Veh. Syst. Dyn. 2011. 49. pp. 1497–1520. |
| [27] |
Antonov S., Fehn A., Kugi A. Unscented Kalman filter for vehicle state estimation// Veh. Syst. Dyn. 2011. 49. P. 1497–1520. |
| [28] |
Davoodabadi I, Ramezani A.A, Mahmoodi M. K., Ahmadizadeh P. Identification of tire forces using Dual Unscented Kalman Filter algorithm // Nonlinear Dyn, 2014. 78. pp. 1907–1919. |
| [29] |
Davoodabadi I, Ramezani A.A, Mahmoodi M. K., Ahmadizadeh P. Identification of tire forces using Dual Unscented Kalman Filter algorithm// Nonlinear Dyn, 2014. 78. P. 1907–1919. |
| [30] |
Kulikova M.V., Kulikov G.YU. Numerical methods for nonlinear filtering for signal processing and measurements. Vychislitel'nyye tekhnologii. 2016. No 4, pp. 64−98 (in Russ.). |
| [31] |
Куликова М.В., Куликов Г.Ю. Численные методы нелинейной фильтрации для обработки сигналов и измерений // Вычислительные технологии. 2016. № 4. C. 64−98. |
| [32] |
Kulikov I.A., Bakhmutov S.V., Barashkov A.A. Investigation of vehicle dynamics with active safety systems through virtual and road tests. Trudy NAMI. 2016. No 265, pp. 53−65 (in Russ.). |
| [33] |
Куликов И.А., Бахмутов С.В., Барашков А.А. Исследование динамики автомобиля с системами активной безопасности посредством виртуальных и дорожных испытаний // Труды НАМИ. 2016. № 265. C. 53−65. |
| [34] |
Pacejka H.B., Besselink I. Tire and vehicle dynamics. Third Edition. Elsevier Ltd. 2012. P. 176-183. P. 202. P. 613-618. |
| [35] |
Svendenius J. Tire Modeling and Friction Estimation. Lund: Lund University. 2007. pp. 130-132. |
| [36] |
Svendenius J. Tire Modeling and Friction Estimation. Lund: Lund University. 2007. P. 130-132. |
Chaplygin A.V., Kulikov I.A.
/
| 〈 |
|
〉 |