Analysis of the heat balance of a spacesuit in a solar airplane
E. A Rezanov , V. I Merkulov , V. I Tishchenko
Izvestiya MGTU MAMI ›› 2020, Vol. 14 ›› Issue (2) : 53 -57.
Analysis of the heat balance of a spacesuit in a solar airplane
Due to the development of technologies, alternative energy sources are becoming more widespread industry and technology. One of the most promising and widely used methods of generating heat is solar radiation. Nowadays, scientists do active research in the field of creating aircraft powered by solar panels, the so-called solar aircraft. Vehicles of this type are an innovative area for the development of aviation. One of the most important problems of the practical use of manned solar aircraft is to ensure the life of the crew of the aircraft. Due to strict weight and size restrictions, the life support system should provide a thermal regime that is comfortable for the pilot throughout all phases of flight, taking into account changes in environmental parameters and have a high degree of reliability and compactness with a minimum weight of all units. The scheme of the life support system (hereinafter referred to as the LSS) is described in the literature [1]. The paper continues the study of the problem described in [2], and an estimate of the external and internal thermal load on the LSS system of a solar aircraft under conditions at the Earth's surface and at the maximum flight altitude is given there. As a result of comparing the obtained values of heat inflows, it was revealed that the total value of the heat load can take both positive and negative values. This means that to ensure a comfort for a pilot, it is necessary to provide both heating and cooling of the pilot's suit. Considering that structural and physiological features of man can seriously affect the values of heat fluxes, the need for physiological tests was substantiated to confirm the data obtained by calculation, and the possible refinement of the design of the LSS system.
solar airplane / spacesuit / life support system / heat gain / chemical absorber / metabolism / heat balance
| [1] |
Абрамов И.П., Северин Г.И., Стоклицкий А.Ю., Шарипов Р.Х. Скафандры и системы для работы в открытом космосе. М. : Машиностроение, 1984. 256 с. |
| [2] |
Резанов Е.А., Меркулов В.И., Россова К.В., Тищенко И.В. Сравнительный анализ методов расчета внешнего теплообмена для скафандра солнечного самолета // Третья международная научно-практическая конференция «Холодильная и криогенная техника, системы кондиционирования и жизнеобеспечения». Москва, 20.11.2019 |
| [3] |
Иванов Д.И., Хромушкин А.И. Системы жизнеобеспечения человека при высотных и космических полётах. М. : Машиностроение, 1968. 252 с. |
| [4] |
Воронин Г.И., Поливода А.И. Жизнеобеспечение экипажей космических кораблей. М.: Машиностроение, 1967. 212 с. |
| [5] |
Рожнов В.Ф. Космические системы жизнеобеспечения. М. : МАИ, 2009. 344 с. |
| [6] |
Научно-прикладной справочник по климату СССР. Выпуск 19. Узбекская ССР. Книга 2. Ленинград : Гидрометеоиздат, 1989. 350 с. |
| [7] |
Малоземов В.В., Рожнов В.Ф., Правецкий В.Н. Системы жизнеобеспечения экипажей летательных аппаратов. Учебник для втузов. М.: Машиностроение, 1986. 584 с. |
| [8] |
Серебряков В.Н. Основы проектирования систем жизнеобеспечения экипажа космических летательных аппаратов. М.: Машиностроение, 1983. 160 с. |
Rezanov E.A., Merkulov V.I., Tishchenko V.I.
/
| 〈 |
|
〉 |