The conclusion of the Dirac matrices in the real, complex and quaternionic representations

A. A Ketsaris

Izvestiya MGTU MAMI ›› 2012, Vol. 6 ›› Issue (2-2) : 311 -318.

PDF
Izvestiya MGTU MAMI ›› 2012, Vol. 6 ›› Issue (2-2) :311 -318. DOI: 10.17816/2074-0530-68552
Articles
research-article

The conclusion of the Dirac matrices in the real, complex and quaternionic representations

Author information +
History +
PDF

Abstract

The article examines the relationship between the laws of the multiplication of vectors in the covariant Clifford algebra and Dirac matrices. The result is that spatial Dirac matrices are recorded in the form of a matrix structural permanent Clifford algebra over a geometric space. Spatio-temporal Dirac matrices represent the structural constants of the condensed Clifford algebra on the space-time. The structural constants are considered on the set of real numbers, complex numbers and quaternions.

Keywords

Dirac matrices / covariant associative algebra / Clifford algebra / structural constants / structural matrixes

Cite this article

Download citation ▾
A. A Ketsaris. The conclusion of the Dirac matrices in the real, complex and quaternionic representations. Izvestiya MGTU MAMI, 2012, 6(2-2): 311-318 DOI:10.17816/2074-0530-68552

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Кецарис А.А. Алгебраические основы физики. Пространство-время и действие как универсальные алгебры, М., Издательство УРСС, 2004, 280с.

[2]

Hestenes D., Weingartshofer A. The electron, new theory and experiment, Kluwer Academic Publishers, Dordrecht, 1991.

[3]

Hestenes D., Sobczyk G. Clifford algebra in geometric calculus, Riedel Publishing Company, Dordrecht, 1984.

RIGHTS & PERMISSIONS

Ketsaris A.A.

PDF

52

Accesses

0

Citation

Detail

Sections
Recommended

/