The calculation of the peristaltic pump characteristics taking into account the roughnesses on the internal surface of the working member
A. I Grishin
Izvestiya MGTU MAMI ›› 2018, Vol. 12 ›› Issue (4) : 30 -40.
The calculation of the peristaltic pump characteristics taking into account the roughnesses on the internal surface of the working member
In the introduction of the work the short review of the literature, devoted to the miniature peristaltic pumps and also to the studies of the influence of the roughness in the microchannels with the laminar flow, is presented. The presented calculation procedure of the pump characteristics is based on the usage of the Bernoulli equation and the interpretation of the pump working member sections with the roughness as the local hydraulic resistances. The losses in these sections are expressed in the equivalent length which has been counted by performing the numerical experiments in the program STAR-CCM+. As have shown by the numerical experiments, the equivalent length of such sections is the function of a Reynolds number and the geometrical parameters of the roughness of the surface of the pump working member. For calculations the axisymmetric roughness with the profiles is in the form of the isosceles triangles and the rectangular triangles have been chosen. The calculation for the roughness in the form of rectangular triangles was performed in such a manner that when the fluid flows in the direction of the pressure pipeline it represented the repeating confusers and the sudden enlargements, and when flow takes place in the opposite direction - diffusors and sudden contractions. The numerical calculation has shown that in such case an energy loss with the flow in the opposite direction is bigger, but only with the certain geometrical parameters of the roughness. It was considered, that the roughness are only in the beginning and in the end of the pump working member (tube), and in the compression region the surface is smooth. As a calculations result the pump’s pressure characteristics for both tube without the sections with the roughness and the tube with these sections were constructed. The results gained with the offered technique have shown good enough coincidence to the results of the numerical experiments
peristaltic pump / laminar flow / computational hydrodynamics
| [1] |
Duan Z., Muzychka Y.S. Effects of axial corrugated roughness on low Reynolds number slip flow and continuum flow in microtubes // Journal of heat transfer. 2010. Vol. 132. 9 p. DOI: 10.1115/1.3211854 |
| [2] |
WG600F Intelligent Industrial Peristaltic Pump. Режим доступа: http://www.nanbei-china.com/product/laboratory/pump/type/2014/0108/717.html. |
| [3] |
BT300L Intelligent flow peristaltic pump. Режим доступа: http://www.nanbei-china.com/product/laboratory/pump/flow/2014/0107/702.html. |
| [4] |
Bar-Cohen Y., Chang Z. Piezoelectrically Actuated Miniature Peristaltic Pump // Proceedings of the SPIE Smart Structures Conference. Newport Beach, CA. 2000. Vol. 3992, paper No. 02. 8 p. DOI: 10.1117/12.388190 |
| [5] |
Yang H., Tsai T.-H., Hu C.-C. Portable Valve-less Peristaltic Micropump Design and Fabrication // 2008 Symposium on Design, Test, Integration and Packaging of Mems/Moems (Dtip). - Institute of Electrical and Electronics Engineers, EDA publishing. 2009. 7 p. |
| [6] |
Du M., Ye K., Wu K., Zhou Z. A Peristaltic Micro Pump Driven by a Rotating Motor with Magnetically Attracted Steel Balls // Sensors. - Molecilar Diversity Presentation International, Basel, Switzerland. 2009. No 9(4), P. 2611-2620. |
| [7] |
Shkolnikov V., Ramunas J., Santiago J. A self-priming, roller-free, miniature, peristaltic pump operable with a single, reciprocating actuator // Sensors and Actuators A: Physical. - Elsevier. 2010. P. 141-146 DOI:10.1016/j.sna.2010.04.018 |
| [8] |
Левицкий А.А., Левицкая З.В., Ситников А.М. Компоненты микросистемной техники. Лабораторный практикум. Красноярск: СФУ, 2007. 85 с. |
| [9] |
Попов Д.Н., Панаиотти С.С., Рябинин М.В. Гидромеханика: учеб. пособие. - 3-е изд., испр. М.: Изд-во МГТУ им. Н.Э. Баумана, 2014. 317c. |
| [10] |
Silva G., Leal N., Semião V. Effect of wall roughness on fluid flow inside a microchannel // 14th int. symp. on applications of laser techniques to fluid mechanics. - Lisbon, Portugal. 2008. 13 p. |
| [11] |
Tang G.H., Li Z., He Y.L., Tao W.Q. Experimental study of compressibility, roughness and rarefaction influences on microchannel flow // International journal of heat and mass transfer. - Elsevier. 2007. Vol. 50 P. 2282-2295. DOI:10.1016/j.ijheatmasstransfer.2006.10.034 |
| [12] |
Mahrous A., Mahmoud S., Al-dadah R.K., Elsaed A.M. Numerical investigation of laminar flow in micro-tubes with designed surface roughness // 3rd micro and nano flows conference. - Thessaloniki, Greecep 2011. 6 p. |
| [13] |
Kandlikar S.G. Roughness effect at microscale - reassessing Nikuradse’s experiments on liquid flow in rough tubes // Bulletin of the polish academy of sciences. Technical sciences. 2005. Vol. 53. No 4. P. 343-349. |
| [14] |
Богомолов Д.Ю., Порошин В.В., Радыгин В.Ю., Сыромятникова А.А., Шейпак А.А. Математическое моделирование течения жидкости в щелевых каналах с учетом реальной микротопографии поверхности их стенок. М.: МГИУ, 2010. 160 с. |
| [15] |
Гришин А.И. Методика расчета характеристики перистальтического насоса линейного типа с неполным сжатием рабочего органа // Известия МГТУ «МАМИ». 2018. № 3. С. 21 -31. |
| [16] |
Лепешкин А.В., Михайлин А.А. Гидравлика машиностроительных гидросистем: учебник. М.: изд. ЦКТ, 2013. 280 с. |
Grishin A.I.
/
| 〈 |
|
〉 |