Mathematical modeling of the high-pressure hydraulic drive of a regulating valve control system of the steam turbine of a steam-electric plant
Elizaveta Yu. Romanchuk , Lyubov A. Kotkas , Alexander A. Zharkovsky , Nikita А. Zhurkin
Izvestiya MGTU MAMI ›› 2024, Vol. 18 ›› Issue (3) : 190 -202.
Mathematical modeling of the high-pressure hydraulic drive of a regulating valve control system of the steam turbine of a steam-electric plant
BACKGROUND: High-pressure hydraulic drives are used to control the shut-off valves of steam and gas turbines. Currently, there is a trend of transition from the low-pressure control systems to the high-pressure control systems, which leads to decrease of size of a control unit and to ensuring easy reparability. The Bosch Rexroth high-pressure hydraulic actuators are widely used. These hydraulic drives are capable of moving the shut-off valve element during up to 0.3 s.
AIM: Development of the mathematical model to obtain main dynamic characteristics of a hydraulic drive of the regulating valve control system of the steam turbine of a steam-electric plant.
METHODS: The studies of dynamic characteristics were carried out with a numerical method using the MATLAB/Simulink software.
RESULTS: The mathematical model of the high-pressure hydraulic drive of the regulating valve control system of the steam turbine of a steam-electric plant, capable of moving the shut-off valve element during up to 0.3 s, was developed. The dynamical characteristics, such as displacement and velocity of the shut-off valve element of the regulating valve, pressure change in the hydraulic cylinder cavities, displacement of a plunger of a spool valve, are presented. The possibility of reducing the list of the used hydraulic equipment was also considered: a comparison of the system with accelerator valves and without accelerator valves was carried out.
CONCLUSION: The practical value of the study lies in the possibility of using the developed mathematical model in the study of various types of hydraulic drives.
hydraulic drive / regulating valve / steam turbine / high pressure / spool valve / MATLAB/Simulink.
| [1] |
Ildiyarov EN, Sizov AN, Chubarov FL. Electromechanical drive-type based, electrohydraulic control circuit for the speed of the steam turbine investigation. Modern high technologies. 2018;4:44–48 (in Russ.) |
| [2] |
Ильдияров Е.Н., Сизов А.Н., Чубаров Ф.Л. Исследование электрогидравлического контура регулирования частоты вращения паровой турбины на базе электромеханического привода // Современные наукоёмкие технологии. 2018. № 4. С. 44–48. EDN: XPPPUT |
| [3] |
Gulyy VA. On the question of the use of GTZA with direct transmission on linear nuclear icebreakers. Marine intellectual technologies. 2021;3(1):96–103. (in Russ.) doi: 10.37220/MIT.2021.53.3.038 |
| [4] |
Гулый В.А. К вопросу о применении на линейных атомных ледоколах ГТЗА с прямой передачей // Морские интеллектуальные технологии. 2021. № 3. Том 1. С. 96–103. doi: 10.37220/MIT.2021.53.3.038 |
| [5] |
Tubyansky LI, Frenkel LD. High-pressure steam turbines of the Leningrad Metal Plant. Construction and maintenance. Мoscow: GEIT; 1956. (in Russ.) |
| [6] |
Тубянский Л.И., Френкель Л.Д. Паровые турбины высокого давления Ленинградского металлического завода. Конструкция и обслуживание. М: ГЭИТ, 1956. |
| [7] |
Pneumax. [internet] Accessed: 18.12.2023. Available from: https://www.pneumax-msk.ru. |
| [8] |
Пневмакс [internet] Дата обращения: 18.12.2023. Режим доступа: https://www.pneumax-msk.ru |
| [9] |
Patent RUS 2670470 / 23.10.2018 Gulyy VA, Ilyin OK, Ostrovsky VG. Gidrosistema ypravlenia klapanami parovoi turbiny. (in Russ.) |
| [10] |
Патент РФ 2670470 23.10.2018. Гулый В.А., Ильин О.К., Островский В.Г. Гидросистема управления клапанами паровой турбины. EDN: QSXDSJ |
| [11] |
Bosch Rexroth. Hydraulic drive for regulating and locking steam and gas turbines [internet] Accessed: 18.12.2023. Available from: https://dc-ru.resource.bosch.com/media/ru/images_45/product_groups_1/me_3/r-rs_08122_2013_02-web.pdf |
| [12] |
Bosch Rexroth. Гидравлический привод для регулирующих и стопорных паровых и газовых турбин [internet] Дата обращения: 18.12.2023. Режим доступа: https://dc-ru.resource.bosch.com/media/ru/images_45/product_groups_1/me_3/r-rs_08122_2013_02-web.pdf |
| [13] |
Voith. Actuators and control systems for turbomachinery. [internet] Accessed: 18.12.2023. Available from: https://voith.com/corp-en/products-services/automation-digital-solutions/actuators-and-control-systems.html |
| [14] |
Voith. Actuators and control systems for turbomachinery [internet] Дата обращения: 18.12.2023. Режим доступа: https://voith.com/corp-en/products-services/automation-digital-solutions/actuators-and-control-systems.html |
| [15] |
Popov DN. Dynamics and regulation of hydro and pneumatic systems. Moscow: Machinostroenie, 1987;2. (in Russ.) |
| [16] |
Попов Д.Н. Динамика и регулирование гидро- и пневмосистем. М.: Машиностроение, 1987. |
| [17] |
Bashta ТМ. Mechanical engineering hydraulics. Moscow: Machinostroenie, 1971. (in Russ.). |
| [18] |
Башта Т.М. Машиностроительная гидравлика. — 2-е изд. — М.: «Машиностроение», 1971. – 672 стр. |
| [19] |
Borovin GK, Kostyuk AV, Seet G, Yastrebov VV. Computer simulation of hydraulic system of exoskeleton. Matematicheskoe modelirovanie. 2006;10:39–54. (in Russ.) |
| [20] |
Боровин Г.К., Костюк А.В., Сит Д., и др. Моделирование гидравлической системы экзоскелетона // Матем. Моделирование. 2006. Т. 18, № 10. С. 39–54. EDN: HVKZXX |
Eco-Vector
/
| 〈 |
|
〉 |