Study of efficiency of the algorithm of acceleration and deceleration control of a wheeled vehicle by means of the accelerator pedal

Alexander V. Klimov

Izvestiya MGTU MAMI ›› 2024, Vol. 18 ›› Issue (1) : 19 -32.

PDF
Izvestiya MGTU MAMI ›› 2024, Vol. 18 ›› Issue (1) : 19 -32. DOI: 10.17816/2074-0530-622753
Transport and transport-technological facilities
research-article

Study of efficiency of the algorithm of acceleration and deceleration control of a wheeled vehicle by means of the accelerator pedal

Author information +
History +
PDF

Abstract

BACKGROUND: As fuel costs are among the significant ones in vehicle operation, it is promising to use vehicle with electric drivetrains, such as battery electric vehicles, which make it possible to reduce these costs. The main key feature of them is mileage at one charge. In order to maximize this feature, designers are working on implementing more advanced energy sources with higher capacity and reducing energy transfer losses from the energy source to the driving wheels. In this path, electric drive is the main source of energy loss. Therefore, it is important not only to use more advanced electric drivetrains, but also to improve control algorithms. For the sake of this, it is necessary to define set points of demanded torque from the engine using only the accelerator pedal taking into account motion velocity, other conditions and vehicle performance. Implementation of this law helps driver to reduce energy consumption, as the vehicle is capable of moving using its inertia (free running) and using regenerative braking at maximum with minimal activity of main braking system.

AIM: Study of operation and efficiency of the algorithm of definition of traction and regenerative torque set points for the traction electric drive, definition of the free running mode depending on motion velocity and definition of the accelerator pedal position using methods of mathematical modeling of vehicle dynamics.

METHODS: The study of operation and efficiency of the law of definition of traction and regenerative torque set points for the traction electric drive and definition of the free running mode was conducted in the MATLAB/Simulink software package.

RESULTS: The paper contains fundamentals of building the algorithm of definition of traction and regenerative torque set points for the traction electric drive and definition of the free running mode, results of virtual study of operation and efficiency of this algorithm for driving a vehicle in the MATLAB/Simulink with virtual conditions relevant to the real ones.

CONCLUSIONS: The practical value of the study lies in ability of using the proposed law of definition of traction and regenerative torque set points for the traction electric drive and definition of the free running mode for development of control systems for traction drive of transport vehicles in order to increase their energy efficiency.

Keywords

efficiency / single pedal control / traction mode / regenerative mode / free running / mathematical modelling / accelerator pedal / torque set point

Cite this article

Download citation ▾
Alexander V. Klimov. Study of efficiency of the algorithm of acceleration and deceleration control of a wheeled vehicle by means of the accelerator pedal. Izvestiya MGTU MAMI, 2024, 18(1): 19-32 DOI:10.17816/2074-0530-622753

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Characteristics of the KAMAZ 6282 electric bus. [internet]. Naberezhnye Chelny. Accessed: 15.10.2022. Available from: https://kamaz.ru/upload/bus/Электробус%20KAMAZ-6282.pdf

[2]

Характеристики электробуса КАМАЗ 6282. [internet]. Набережные Челны. Дата обращения 15.10.2022. Режим доступа: https://kamaz.ru/upload/bus/Электробус%20KAMAZ-6282.pdf

[3]

Klimov AV, Chirkin VG, Tishin AM. About some design features and types of transport traction electric motors. Avtomobilnaya promyshlennost. 2021;7:15–21. (In Russ). EDN: FEETSV

[4]

Климов А.В., Чиркин В.Г., Тишин А.М. О некоторых конструктивных особенностях и видах транспортных тяговых электрических двигателей // Автомобильная промышленность. 2021. № 7. С. 15–21. EDN: FEETSV

[5]

Klimov AV, Tishin AM, Chirkin VG. Various types of traction synchronous motors for urban operating conditions. Gruzovik. 2021. № 6. С. 3–7. (In Russ). EDN: ZTRMYW

[6]

Климов А.В., Тишин А.М., Чиркин В.Г. Различные виды тяговых синхронных двигателей для городских условий эксплуатации // Грузовик. 2021. № 6. С. 3–7. EDN: ZTRMYW

[7]

Zhileikin MM, Klimov AV, Maslennikov IK. Algorithm for generating a control signal from the accelerator pedal, ensuring energy-efficient electricity consumption by the traction drive of an electric bus. Izvestiya MGTU «MAMI». 2022;16(1):51–60. (In Russ). doi: 10.17816/2074-0530-100232

[8]

Жилейкин М.М., Климов А.В., Масленников И.К. Алгоритм формирования управляющего сигнала со стороны педали акселератора, обеспечивающий энергоэффективное потребление электроэнергии тяговым приводом электробуса // Известия МГТУ «МАМИ». 2022. Т. 16, № 1. С. 51–60. doi: 10.17816/2074-0530-100232

[9]

Butarovich DO, Skotnikov GI, Eranosyan AV. Algorithm for controlling regenerative braking using the accelerator pedal. Nauchno-tekhnicheskiy vestnik Bryanskogo gosudarstvennogo universiteta. 2022. №4. (In Russ). EDN: IMJRKB doi: 10.22281/2413-9920-2022-08-04-275-281

[10]

Бутарович Д.О., Скотников Г.И., Эраносян А.В. Алгоритм управления рекуперативным торможением с помощью педали акселератора // Научно-технический вестник Брянского государственного университета. 2022. № 4. EDN: IMJRKB doi: 10.22281/2413-9920-2022-08-04-275-281

[11]

Wen He, Chen Wang, Hui Jia. A single-pedal regenerative braking control strategy of accelerator pedal for electric vehicles based on adaptive fuzzy control algorithm. Energy Procedia. 2018;152:624–629. doi: 10.1016/j.egypro.2018.09.221

[12]

Wen He, Chen Wang, Hui Jia. A single-pedal regenerative braking control strategy of accelerator pedal for electric vehicles based on adaptive fuzzy control algorithm // Energy Procedia. 2018. Vol. 152. P. 624–629. doi: 10.1016/j.egypro.2018.09.221

[13]

Yongqiang Zhao, Xin Zhang, Jiashi Li, et al. A research on evaluation and development of single-pedal function for electric vehicle based on PID. J. Phys. Conf. Ser. 2020;1605. doi: 10.1088/1742-6596/1605/1/012109

[14]

Yongqiang Zhao, Xin Zhang, Jiashi Li, et al. A research on evaluation and development of single-pedal function for electric vehicle based on PID // J. Phys. Conf. Ser. 2020. Vol. 1605. doi: 10.1088/1742-6596/1605/1/012109

[15]

Hongwen He, Chen Wang, Hui Jia, Xing Cui. An intelligent braking system composed single-pedal and multi-objective optimization neural network braking control strategies for electric vehicle. Applied Energy. 2020;259(C). doi: 10.1016/j.apenergy.2019.114172

[16]

Hongwen He, Chen Wang, Hui Jia, Xing Cui. An intelligent braking system composed single-pedal and multi-objective optimization neural network braking control strategies for electric vehicle // Applied Energy. 2020. Vol. 259, (C). doi: 10.1016/j.apenergy.2019.114172

[17]

Zhang J, Lv C, Gou J, et al. Cooperative control of regenerative braking and hydraulic braking of an electrified passenger car. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 2012;226(10):1289–1302. doi: 10.1177/0954407012441884

[18]

Zhang J., Lv C., Gou J., et al. Cooperative control of regenerative braking and hydraulic braking of an electrified passenger car // Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 2012. Vol. 226, N. 10. P. 1289–1302. doi: 10.1177/0954407012441884

[19]

Guo J, Wang J, Cao B. Regenerative braking strategy for electric vehicles. In: 2009 IEEE Intelligent Vehicles Symposium. 03–05 June 2009. Xi’an, China. Xi’an: IEEE; 2009. doi: 10.1109/IVS.2009.5164393

[20]

Guo J., Wang J., Cao B. Regenerative braking strategy for electric vehicles[C] // 2009 IEEE Intelligent Vehicles Symposium. 03–05 June 2009. Xi’an, China. Xi’an: IEEE, 2009. doi: 10.1109/IVS.2009.5164393

[21]

Xu Guoqing, Li Weimin, Xu Kun, et al. An intelligent regenerative braking strategy for electric vehicles. Energies. 2011;4(9):1461–1477. doi: 10.3390/en4091461

[22]

Xu Guoqing, Li Weimin, Xu Kun, et al. An intelligent regenerative braking strategy for electric vehicles // Energies. 2011. Vol. 4, N. 9. P. 1461–1477. doi: 10.3390/en4091461

[23]

Zhang J, Lv C, Qiu M, et al. Braking energy regeneration control of a fuel cell hybrid electric bus. Energy Conversion & Management. 2013;76(76):1117–1124. doi: 10.1016/j.enconman.2013.09.003

[24]

Zhang J., Lv C., Qiu M., et al. Braking energy regeneration control of a fuel cell hybrid electric bus // Energy Conversion & Management. 2013. Vol. 76, N. 76. P. 1117–1124. doi: 10.1016/j.enconman.2013.09.003

[25]

Wang JW, Tsai SH, Li HX, et al. Spatially Piecewise Fuzzy Control Design for Sampled-Data Exponential Stabilization of Semi-Linear Parabolic PDE Systems. IEEE Transactions on Fuzzy Systems. 2018;26(5):2967–2980. doi: 10.1109/TFUZZ.2018.2809686

[26]

Wang J.W., Tsai S.H., Li H.X., et al. Spatially Piecewise Fuzzy Control Design for Sampled-Data Exponential Stabilization of Semi-Linear Parabolic PDE Systems // IEEE Transactions on Fuzzy Systems. 2018. Vol. 26, N 5. P. 2967–2980. doi: 10.1109/TFUZZ.2018.2809686

[27]

Zhang K, Xu L, Hua J, et al. A Comparative Study on Regenerative Braking System and Its Strategies for Rear-wheel Drive Battery Electric Vehicles. Qiche Gongcheng / Automotive Engineering. 2015;37(2):125–131.

[28]

Zhang K., Xu L., Hua J., et al. A Comparative Study on Regenerative Braking System and Its Strategies for Rear-wheel Drive Battery Electric Vehicles // Qiche Gongcheng / Automotive Engineering. Vol. 37, N. 2. P. 125–131.

[29]

Lv C, Zhang J, Li Y, et al. Mechanism analysis and evaluation methodology of regenerative braking contribution to energy efficiency improvement of electrified vehicles. Energy Conversion and Management. 2015;92:469–482. doi: 10.1016/j.enconman.2014.12.092

[30]

Lv C., Zhang J., Li Y., et al. Mechanism analysis and evaluation methodology of regenerative braking contribution to energy efficiency improvement of electrified vehicles // Energy Conversion and Management. 2015. Vol. 92. P. 469–482. doi: 10.1016/j.enconman.2014.12.092

[31]

Kulas RA, Rieland H, Pechauer J. A System Safety Perspective into Chevy Bolt’s One Pedal Driving. SAE Technical Paper. 2019. doi: 10.4271/2019-01-0133

[32]

Kulas R.A., Rieland H., Pechauer J. A System Safety Perspective into Chevy Bolt’s One Pedal Driving // SAE Technical Paper. 2019. doi: 10.4271/2019-01-0133

[33]

Wang J, Besselink IJM, van Boekel JJP, Nijmeijer H. Evaluating the energy efficiency of a one pedal driving algorithm. In: European Battery, Hybrid and Fuel Cell Electric Vehicle Congress (EEVC 2015), Brussels, Belgium. 2015. Accessed: 15.10.2022. Available from: https://pure.tue.nl/ws/files/15971352/Evaluating_the_energy_efficiency_of_a_one_pedal_driving_algorithm.pdf

[34]

Wang J., Besselink I.J.M., van Boekel J.J.P., Nijmeijer H. Evaluating the energy efficiency of a one pedal driving algorithm. In: European Battery, Hybrid and Fuel Cell Electric Vehicle Congress (EEVC 2015), Brussels, Belgium. 2015. Дата обращения 15.10.2022. Режим доступа: https://pure.tue.nl/ws/files/15971352/Evaluating_the_energy_efficiency_of_a_one_pedal_driving_algorithm.pdf

[35]

Patent RF № 2797069 / 31.05.2023. Byul. № 16. Klimov AV, Ospanbekov BK, Zhileykin MM, et al. Sposob upravleniya individualnym tyagovym elektroprivodom vedushchikh koles mnogokolesnogo transportnogo sredstva. (In Russ). EDN QAUBVR

[36]

Патент РФ № 2797069 / 31.05.2023. Бюл. № 16. Климов А.В., Оспанбеков Б.К., Жилейкин М.М. и др. Способ управления индивидуальным тяговым электроприводом ведущих колес многоколесного транспортного средства. EDN QAUBVR

[37]

Zhileikin MM, Kotiev GO. Modeling of vehicle systems. Moscow: MGTU im NE Baumana; 2020. (In Russ).

[38]

Жилейкин М.М., Котиев Г.О. Моделирование систем транспортных средств. М.: МГТУ им. Н.Э. Баумана, 2020.

[39]

Biryukov VV, Porsev EG. Traction electric drive. Novosibirsk: NGTU; 2018. (In Russ).

[40]

Бирюков В.В., Порсев Е.Г. Тяговый электрический привод. Новосибирск: НГТУ, 2018.

[41]

GOST R 54810-2011. Avtomobilnye transportnye sredstva. Toplivnaya ekonomichnost. Metody ispytaniy. Mosow: STANDARTINFORM, 2012. (In Russ). Accessed: 15.10.2022. Available from: https://meganorm.ru/Data/517/51790.pdf

[42]

ГОСТ Р 54810-2011. Автомобильные транспортные средства. Топливная экономичность. Методы испытаний. М.: СТАНДАРТИНФОРМ, 2012. Дата обращения 15.10.2022. Режим доступа: https://meganorm.ru/Data/517/51790.pdf

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/