The monoreactive multibody floating-frequency oscillator

Igor P. Popov

Izvestiya MGTU MAMI ›› 2024, Vol. 18 ›› Issue (1) : 75 -81.

PDF
Izvestiya MGTU MAMI ›› 2024, Vol. 18 ›› Issue (1) : 75 -81. DOI: 10.17816/2074-0530-585185
Heat engines
research-article

The monoreactive multibody floating-frequency oscillator

Author information +
History +
PDF

Abstract

BACKGROUND: The study is related to the machine science field and to oscillating mechanical systems in particular. The study relevance is explained with the fact that oscillations of inertial masses can be found all-around.

AIM: Development of the mathematical model of the monoreactive multibody floating-frequency oscillator.

METHODS: It is proved that points x1, x2, …., xn, which are coordinates of the end of the random vector R in the coordinate system 0xz1, 0xz2, …., 0xzn, are vertexes of a regular polygon. Shape and size of the polygon are not related to coordinates of the vector R, so they are constant. The center of the regular polygon always coincides with the middle of the vector R. In the considered (idealized) case, the polygon with the oscillating bodies with the mass m located at vertexes belongs to the plane Z. In technical applications, bodies should not impede motion of each other, so each body should have an own plane, and all planes should be in parallel (alike the multipiston mechanism).

RESULTS: The condition of occurrence of natural harmonic oscillations is equal-zero full energy of the system, which is exclusively kinematic in the considered case and which ensures monoreactive behavior of the oscillator. In the considered multidimensional planar monoreactive oscillator, free harmonic oscillations of bodies can occur.

CONCLUSIONS: Only kinetic energy takes part in energy exchange. There is no necessity in spring elements. The oscillator does not have fixed value of natural oscillation frequency. The frequency depends on initial velocities and location of bodies. The regular polygon x1, x2, …., xn executes double rotation: around the point 0 and around the point r. Meanwhile, bodies execute linear harmonic oscillations with the amplitude of R. Use of either a slider-crank mechanism or a rod-crank mechanism helps to make bodies move in parallel. The obtained results can be used in development and study of mechanisms executing reciprocating motion in piston engines, in mechatronics and robotic systems, in hydraulic machines, vacuum and compressor machinery, in hydraulic and pneumatic systems, in on-ground transport and technological means and facilities.

Keywords

polygon / oscillating body / free oscillations / monoreactive system / frequency

Cite this article

Download citation ▾
Igor P. Popov. The monoreactive multibody floating-frequency oscillator. Izvestiya MGTU MAMI, 2024, 18(1): 75-81 DOI:10.17816/2074-0530-585185

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Popov IP. Monoreactive harmonic oscillator. Trudy MAI. 2022;126. (In Russ). doi: 10.34759/trd-2022-126-01

[2]

Попов И.П. Монореактивный гармонический осциллятор // Труды МАИ. 2022. № 126. doi: 10.34759/trd-2022-126-01

[3]

Popov IP. Free sinusoidal oscillations based on the mutual exchange of kinetic energy between three loads. Trudy MAI. 2023;129. (In Russ). doi: 10.34759/trd-2023-129-02

[4]

Попов И.П. Свободные синусоидальные колебания на основе взаимного обмена кинетической энергией между тремя грузами // Труды МАИ. 2023. № 129. doi: 10.34759/trd-2023-129-02

[5]

Popov IP. Free harmonic oscillations without the use of potential energy. Oboronnyy kompleks — nauchno-tekhnicheskomu progressu Rossii. 2022;4(156):9–12. (In Russ). doi: 10.52190/1729-6552_2022_4_9

[6]

Попов И.П. Свободные гармонические колебания без использования потенциальной энергии // Оборонный комплекс — научно-техническому прогрессу России. 2022. № 4(156). С. 9–12. doi: 10.52190/1729-6552_2022_4_9

[7]

Popov IP. Application of the Symbolic (Complex) Method to Study Near-Resonance Phenomena. Journal of Machinery Manufacture and Reliability. 2020;49(12):1053–1063. (In Russ). doi: 10.3103/S1052618820120122

[8]

Popov I.P. Application of the Symbolic (Complex) Method to Study Near-Resonance Phenomena // Journal of Machinery Manufacture and Reliability. 2020. Vol. 49. No. 12. Р. 1053–1063. doi: 10.3103/S1052618820120122

[9]

Popov IP. Symbolic representation of forced vibrations of branched mechanical systems. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika. 2021;72:118–130. (In Russ). doi 10.17223/19988621/72/10

[10]

Попов И.П. Символическое представление вынужденных колебаний разветвленных механических систем // Вестник Томского государственного университета. Математика и механика. 2021. № 72. С. 118–130. doi 10.17223/19988621/72/10

[11]

Popov IP. Sources of harmonic force and velocity in mechatronic automatic systems. Mekhatronika, avtomatizatsiya, upravlenie. 2021;22(4):208–216. (In Russ). doi: 10.17587/mau.22.208-216

[12]

Попов И.П. Источники гармонических силы и скорости в мехатронных автоматических системах. Мехатроника, автоматизация, управление. 2021. Т. 22, № 4. С. 208–216. doi: 10.17587/mau.22.208-216

[13]

Popov IP. Application of the symbolic (complex) method for calculating complex mechanical systems under harmonic influences. Prikladnaya fizika i matematika. 2019;4:14–24. (In Russ). doi: 10.25791/pfim.04.2019.828

[14]

Попов И.П. Применение символического (комплексного) метода для расчета сложных механических систем при гармонических воздействиях // Прикладная физика и математика. 2019. № 4. С. 14–24. doi: 10.25791/pfim.04.2019.828

[15]

Popov IP. Towing devices of a multi-link vehicle. Izvestiya MGTU MAMI. 2023;17(1):35–42. (In Russ). doi: 10.17816/2074-0530-321254

[16]

Попов И.П. Тягово-сцепные устройства многозвенного транспортного средства // Известия МГТУ МАМИ. 2023. Т. 17. № 1. С. 35–42. doi: 10.17816/2074-0530-321254

[17]

Popov IP. Varieties of Mechanical Powers. Journal of Machinery Manufacture and Reliability. 2022;51(8):746–750. doi: 10.3103/S1052618822080155

[18]

Popov I.P. Varieties of Mechanical Powers // Journal of Machinery Manufacture and Reliability. 2022. Vol. 51. No. 8. Р. 746–750. doi: 10.3103/S1052618822080155

[19]

Popov IP. Components of mechanical power under harmonic influences. Fundamentalnye i prikladnye problemy tekhniki i tekhnologii. 2022;1(351):9–14. (In Russ). doi: 10.33979/2073-7408-2022-351-1-9-14

[20]

Попов И.П. Cоставляющие механической мощности при гармонических воздействиях // Фундаментальные и прикладные проблемы техники и технологии. 2022. № 1 (351). С. 9–14. doi: 10.33979/2073-7408-2022-351-1-9-14

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/