Mathematical model of the hovercraft lift system
Alexander V. Lepeshkin , Nikolay G. Sosnovsky , Van Hoa Nguyen
Izvestiya MGTU MAMI ›› 2023, Vol. 17 ›› Issue (4) : 357 -366.
Mathematical model of the hovercraft lift system
BACKGROUND: Currently, hovercrafts are used worldwide thanks to their amphibian capabilities and mobility at water and slightly prepared areas with low supporting properties. Whereas, in practice, hovercrafts have two main systems ensuring motion, lift and traction which can be combined (operating from a common source of mechanical energy) as well as separated.
This paper considers a hovercraft with separated lift and traction systems. The lift system of this hovercraft consist of piston diesel internal combustion engine (ICE), hydrostatic transmission, axial fans, feeding channel and an air-cushion plenum. The considered variant is chosen because hydrostatic transmission has a number of sufficient advantages in comparison with mechanical transmission with universal shafts and pulley drives, widely used at present time. The paper considers the open plenum lift system.
AIM: Development of the combined mathematical model of the hovercraft lift system consisting of piston diesel ICE, hydrostatic transmission and a fan supplying air into the air-cushion plenum.
METHODS: Using the MATLAB/Simulink environment, the engine power adjustment at hovercraft motion on various ground surfaces is studied with regard to increasing the efficiency of the fan and the whole system. Analytical scheme of the system is given, acceptable transient characteristics are obtained. Efficiency and range of optimal operation of the Sauer-Danfoss pump and hydraulic motor are estimated. The process of hovercraft adjustment from the established mode to a new state when motion condition change is considered.
RESULTS: According to the simulation results, there is influence of the income control signal (adjustment parameter of engine operation modes) and disturbance signal (pressure change coefficient that defines properties of ground surface) on parameters describing the hovercraft motion.
CONCLUSION: The developed mathematical model helps to choose and evaluate adjustment parameters of engine operation modes at hovercraft motion on various ground surfaces, to analyze and to improve the system energy efficiency.
hovercraft / lift system / internal combustion engine / hydrostatic transmission / energy efficiency / mathematical model
| [1] |
Kachanov IV, Ledyan YuP, Shcherbakova MK. Construction of high-speed vessels. In 3 Parts. P. 3. Hovercraft. Minsk: BNTU; 2015. (in Russ). |
| [2] |
Качанов И.В., Ледян Ю.П., Щербакова М.К. Конструкция быстроходных судов. В. 3 ч. Ч. 3 Суда на воздушной подушке. Минск: БНТУ, 2015. |
| [3] |
Knyazev SI, Lomovskikh AE, Guliev ERO. Development of a stand to study the influence of the air coefficient on the energy and economic performance of internal combustion engines. Nauka i obrazovanie na sovremennom etape razvitiya: opyt, problemy i puti ikh resheniya. 2019;84–87. (in Russ). |
| [4] |
Князев С.И., Ломовских А.Е., Гулиев Э.Р.О. Разработка стенда для исследования влияния коэффициента воздуха на энергетические и экономические показатели двигателей внутреннего // Наука и образование на современном этапе развития: опыт, проблемы и пути их решения. 2019. С. 84–87. |
| [5] |
Kukharenok GM. Theory of working processes of internal combustion engines: a methodological guide for students of correspondence courses in the specialty “Internal combustion engines”. Minsk: BNTU; 2011. (in Russ). |
| [6] |
Кухаренок Г.М. Теория рабочих процессов двигателей внутреннего сгорания: методическое пособие для студентов заочной формы обучения специальности «Двигатели внутреннего сгорания». Минск: БНТУ, 2011. |
| [7] |
Brusilovsky IV. Aerodynamic designs and characteristics of TsAGI axial fans. Moscow; Nedra; 1978. (in Russ). |
| [8] |
Брусиловский И.В. Аэродинамические схемы и характеристики осевых вентиляторов ЦАГИ. Москва, Недра, 1978. |
| [9] |
Sosnovsky NG, Nguyen VH. Computational studies of the hydraulic transmission of a hovercraft. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie. 2023;4:46–54. (in Russ). doi: 10.18698/0536-1044-2023-4-46-54 |
| [10] |
Сосновский Н.Г., Нгуен В.Х. Расчётные исследования гидравлической трансмиссии судна на воздушной подушке // Известия высших учебных заведений. Машиностроение. 2023. № 4. C. 46–54. doi: 10.18698/0536-1044-2023-4-46-54 |
| [11] |
DIESEL-RK software [internet] Accessed: 05.09.2023. Available from: https://diesel-rk.com/ |
| [12] |
Программный комплекс ДИЗЕЛЬ-РК [internet] [дата обращения: 05.09.2023]. Режим доступ: https://diesel-rk.com/ |
| [13] |
Patent USSR 1673909 / 30.08.1991. Khokhlov FF, Shtyka MG, Shtyka AG. Sposob regulirovaniya moshchnosti dizelya. (in Russ). Accessed: 05.09.2023. Available from: https://patents.su/4-1673909-sposob-regulirovaniya-moshhnosti-dizelya.html |
| [14] |
Патент СССР. SU 1673909 A1 / 30.08.1991. Хохлов Ф.Ф., Штыка М.Г., Штыка А.Г. Способ регулирования мощности дизеля. Дата обращения: 20.05.2023. Режим доступа: https://patents.su/4-1673909-sposob-regulirovaniya-moshhnosti-dizelya.html |
| [15] |
Lepeshkin AV, Kurmaev RKh, Katanaev NK. Identification of the operation of the engine of a self-propelled machine for use in the mathematical model of its movement (on the example of the DT466 engine). Izvestiya MGTU «MAMI». 2007;1(2):68–73. (in Russ). doi: 10.17816/2074-0530-69558 |
| [16] |
Лепешкин А.В., Курмаев Р.Х., Катанаев Н.К. Идентификация работы двигателя самоходной машины для использования в математической модели её движения (на примере двигателя DT466) // Известия МГТУ «МАМИ». 2007. Т. 1, №. 2. С. 68–73. doi: 10.17816/2074-0530-69558 |
| [17] |
Lepeshkin AV, Nguyen V. To the question of the description of the internal combustion en-gine in the mathematical model of the lifting system of the hovercraft (on the example of the ZMZ-51432.10 CRS engine). Izvestiya MGTU MAMI. 2023;17(2):107–114. (in Russ). doi: 10.17816/2074-0530-472097 |
| [18] |
Лепешкин А.В., Нгуен В. К вопросу об описании ДВС в математической модели системы подъёма судна на воздушной подушке (на примере двигателя ЗМЗ-51432.10 CRS) // Известия МГТУ “МАМИ“. 2023. Т. 17, № 2. C. 107–114. doi: 10.17816/2074-0530-472097 |
| [19] |
Sosnovsky NG, Brusov VA, Nguyen VKh. Modeling of a hydraulic drive with volumetric control of an amphibious vehicle. Inzhenernyy zhurnal: Nauka i innovatsii. 2021;11(119). (in Russ). doi: 10.18698/2308-6033-2021-11-2127 |
| [20] |
Сосновский Н.Г., Брусов В.А., Нгуен В.Х. Моделирование гидропривода с объёмным регулированием амфибийного транспортного средства // Инженерный журнал: Наука и инновации. 2021. № 11(119). doi: 10.18698/2308-6033-2021-11-2127 |
| [21] |
Brusov VA, Merzlikin YuYu, Men’shikov AS. Development of a control system for the hydraulic system parameters of a vehicle with a combined chassis on an air cushion. Trudy NAMI. 2021;(1):35–46. (In Russ). doi: 10.51187/0135-3152-2021-1-35-46 |
| [22] |
Брусов В.А., Мерзликин Ю.Ю., Меньшиков А.С. Разработка системы управления параметрами гидравлической системы транспортного средства с комбинированным шасси на воздушной подушке // Труды НАМИ. 2021. № 1. С. 35–46. doi: 10.51187/0135-3152-2021-1-35-46 |
| [23] |
Sosnovsky NG, Nguyen VH. Computational studies of the hydraulic transmission of a hovercraft. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie. 2023;4:46–54. (in Russ). doi: 10.18698/0536-1044-2023-4-46-54 |
| [24] |
Сосновский Н.Г., Нгуен В.Х. Расчётные исследования гидравлической трансмиссии судна на воздушной подушке // Известия высших учебных заведений. Машиностроение. 2023. № 4. C. 46–54. doi: 10.18698/0536-1044-2023-4-46-54 |
Eco-Vector
/
| 〈 |
|
〉 |