To the question of the description of the internal combustion engine in the mathematical model of the lifting system of the hovercraft (on the example of the ZMZ-51432.10 CRS engine)

Alexander V. Lepeshkin , Van Hoa Nguyen

Izvestiya MGTU MAMI ›› 2023, Vol. 17 ›› Issue (2) : 107 -114.

PDF
Izvestiya MGTU MAMI ›› 2023, Vol. 17 ›› Issue (2) : 107 -114. DOI: 10.17816/2074-0530-472097
Heat engines
research-article

To the question of the description of the internal combustion engine in the mathematical model of the lifting system of the hovercraft (on the example of the ZMZ-51432.10 CRS engine)

Author information +
History +
PDF

Abstract

Introduction. It is known that about one third of the total capacity of the power plant of the hovercraft (SVP) is spent on the creation of an air cushion that ensures the rise of the main hull of the vessel. At the same time, in SVP, the source of mechanical energy, as a rule, is a diesel internal combustion engine (ICE). This article discusses one of the issues related to the creation of a mathematical model of the lifting system of the SVP, using: ICE, hydraulic transmission, axial fans and an air cushion nozzle scheme. Since in the vast majority of cases, the internal combustion engine performs its work in partial load modes, it becomes necessary to effectively control the power of the internal combustion engine in order to achieve its high efficiency in partial load modes.

AIMS. The purpose of this study is to develop a mathematical description of the operation of the internal combustion engine both in external and partial modes of operation, for use in a mathematical model of the operation of the lifting system of the SVP.

Methods. In this study, a ZMZ-51432.10 CRS diesel engine is used for the lifting system of the hovercraft.

Results. Using the data obtained using the DIESEL-RK program for this ICE, in the Microsoft Excel environment, the corresponding trend lines were obtained for them by approximating the points that identify the partial characteristics of the engine with fourth-order polynomials, as well as the dependence of the coefficients of these polynomials on the control parameter of the ICE operation mode .

Conclusion. The developed mathematical description of engine operation can be integrated with various load models when simulating real systems using internal combustion engines as energy sources. This means that it can also be used in mathematical modeling of the SVP lifting system in the MATLAB Simulink package.
The approach proposed in this article makes it possible to build mathematical models of various systems using internal combustion engines, simplifying the study and saving computational time. Also, the results obtained can be of reference value.

Keywords

internal combustion engine / hovercraft / hydraulic transmission / energy efficiency

Cite this article

Download citation ▾
Alexander V. Lepeshkin,Van Hoa Nguyen. To the question of the description of the internal combustion engine in the mathematical model of the lifting system of the hovercraft (on the example of the ZMZ-51432.10 CRS engine). Izvestiya MGTU MAMI, 2023, 17(2): 107-114 DOI:10.17816/2074-0530-472097

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Knyazev SI, Lomovskikh AE, Guliev ERO. Development of a stand to study the influence of the air coefficient on the energy and economic performance of internal combustion engines. Nauka i obrazovanie na sovremennom etape razvitiya: opyt, problemy i puti ikh resheniya. 2019. С. 84–87. (in Russ.)

[2]

Князев С.И., Ломовских А.Е., Гулиев Э.Р.О. Разработка стенда для исследования влияния коэффициента воздуха на энергетические и экономические показатели двигателей внутреннего // Наука и образование на современном этапе развития: опыт, проблемы и пути их решения. 2019. С. 84–87.

[3]

Kukharenok GM. Theory of working processes of internal combustion engines: a methodological guide for students of correspondence courses in the specialty "Internal combustion engines". Minsk: BNTU; 2011. (in Russ.)

[4]

Кухаренок Г.М. Теория рабочих процессов двигателей внутреннего сгорания: методическое пособие для студентов заочной формы обучения специальности «Двигатели внутреннего сгорания». Минск: БНТУ, 2011.

[5]

Diesel engine model ZMZ-51432 CRS for UAZ vehicles of ecological class 4. Design, operation, maintenance and repair [internet] (in Russ.) Accessed: 20.05.2023. Available from: http://www.uazprofi.ru/files/userfiles/Katalogi/zmz_51432_patriotE4_2013.pdf

[6]

Дизельный двигатель модели ЗМЗ-51432 CRS для автомобилей УАЗ экологического класса 4. Устройство, эксплуатация, техническое обслуживание и ремонт. Дата обращения: 20.05.2023. Режим доступа: http://www.uazprofi.ru/files/userfiles/Katalogi/zmz_51432_patriotE4_2013.pdf

[7]

Kuleshov AS, Kozlov AV, Fadeev YuM, et al. Diesel-RK program: modeling and optimization of internal combustion engines. In: Collection of proceedings of the international scientific and technical conference "Engine-2010", dedicated to 180 anniversary of MSTU im. N.E. Bauman / Edited by NA Ivashchenko, VA Wagner, LV Grekhov. Moscow: MGTU im NE Baumana; 2010. С. 287–292. (in Russ.) Accessed: 20.05.2023. Available from: http://piston-engines.ru/images/konferencia/2010/articles/287-292.pdf

[8]

Кулешов А.С., Козлов А.В., Фадеев Ю.М., и др. Программа Дизель-РК: моделирование и оптимизация рабочих процессов ДВС // Сборник трудов докладов международной научно-технической конференции "Двигатель-2010", посвященной 180-летию МГТУ им. Н.Э. Баумана / Под редакцией Н.А. Иващенко, В.А. Вагнера, Л.В. Грехова. М.: МГТУ им. Н.Э. Баумана, 2010. С. 287–292. Дата обращения: 20.05.2023. Режим доступа: http://piston-engines.ru/images/konferencia/2010/articles/287-292.pdf

[9]

Kuleshov A, Grekhov L. Multidimensional Optimization of DI Diesel Engine Process Using Multi-Zone Fuel Spray Combustion Model and Detailed Chemistry NOx Formation Model. SAE 2013 World Congress & Exhibition. Allegheny County: SAE International; 2013. doi: 10.4271/2013-01-0882

[10]

Kuleshov A., Grekhov L. Multidimensional Optimization of DI Diesel Engine Process Using Multi-Zone Fuel Spray Combustion Model and Detailed Chemistry NOx Formation Model // SAE 2013 World Congress & Exhibition. Allegheny County: SAE International, 2013. doi: 10.4271/2013-01-0882

[11]

Kuleshov A, Mahkamov K. Multi-zone diesel fuel spray combustion model for the simulation of a diesel engine running on biofuel. Proceedings of the Institution of Mechanical Engineers. Part A. Journal of Power and Energy. 2008;222(3):309-321. doi: 10.1243/09576509JPE530

[12]

Kuleshov A., Mahkamov K. Multi-zone diesel fuel spray combustion model for the simulation of a diesel engine running on biofuel // Proceedings of the Institution of Mechanical Engineers. Part A. Journal of Power and Energy. 2008. Vol. 222, N 3. P. 309-321. doi: 10.1243/09576509JPE530

[13]

Software complex DIESEL-RK [internet] Accessed: 20.05.2023. Available from: https://diesel-rk.com

[14]

Программный комплекс ДИЗЕЛЬ-РК [internet] Дата обращения: 20.05.2023. Режим доступа: https://diesel-rk.com

[15]

Patent USSR. SU 1673909 A1 / 30.08.1991. Khokhlov FF, Shtyka MG, Shtyka AG. Sposob regulirovaniya moshchnosti dizelya. (in Russ.) Accessed: 20.05.2023. Available from: https://patents.su/4-1673909-sposob-regulirovaniya-moshhnosti-dizelya.html

[16]

Патент СССР. SU 1673909 A1 / 30.08.1991. Хохлов Ф.Ф., Штыка М.Г., Штыка А.Г. Способ регулирования мощности дизеля. Дата обращения: 20.05.2023. Режим доступа: https://patents.su/4-1673909-sposob-regulirovaniya-moshhnosti-dizelya.html

[17]

Пухов А.А., Гринкруг М.С. Способы регулирования мощностей двигателей внутреннего сгорания, работающих по циклу дизеля // Производственные технологии будущего: от создания к внедрению. 2022. С. 293–296. (in Russ.)

[18]

Пухов А.А., Гринкруг М.С. Способы регулирования мощностей двигателей внутреннего сгорания, работающих по циклу дизеля // Производственные технологии будущего: от создания к внедрению. 2022. С. 293–296.

[19]

Lepeshkin AV, Kurmaev RKh, Katanaev NK. Identification of the operation of the engine of a self-propelled machine for use in the mathematical model of its movement (on the example of the DT466 engine). Izvestiya MGTU «MAMI». 2007;1(2):68–73. (in Russ.) doi: 10.17816/2074-0530-69558.

[20]

Лепешкин А.В., Курмаев Р.Х., Катанаев Н.К. Идентификация работы двигателя самоходной машины для использования в математической модели её движения (на примере двигателя DT466) // Известия МГТУ «МАМИ». 2007. Т. 1, №. 2. С. 68–73. doi: 10.17816/2074-0530-69558.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/