Increasing the wear resistance of the ICE’s valves with the laser cladding method

Alexey V. Zavitkov , Alexander S. Loktev , Alexander B. Lyukhter

Izvestiya MGTU MAMI ›› 2023, Vol. 17 ›› Issue (3) : 217 -224.

PDF
Izvestiya MGTU MAMI ›› 2023, Vol. 17 ›› Issue (3) : 217 -224. DOI: 10.17816/2074-0530-472072
Heat engines
research-article

Increasing the wear resistance of the ICE’s valves with the laser cladding method

Author information +
History +
PDF

Abstract

BACKGROUND: There is plenty of factors leading to failure and expensive repair of piston engines at their operation. One of the widespread factors capable of affecting the engine operation is combustion chamber sealing failure. During the engine operation, gases combusting in a chamber bring pressure on working surfaces of a valve and a valve seat. If these surfaces do not ensure sealing, exhaust gases begin to leak in the exhaust manifold untimely, in some cases in the intake manifold as well. In addition, filling of cylinders with inlet charge worsens. In majority of cases, combustion chamber sealing failure caused by defect formation at working surfaces of the valve — valve seat coupling. In order to avoid combustion chamber sealing failures and other issues of operation of piston engines, it is necessary to minimize working surfaces wearing by means of wear-resistant coating.

AIMS: Wear- and corrosion-resistant coating of valve’s working surface to increase service life.

METHODS: The factors affecting the reliability of the valve — valve seat coupling were defined by means of literary sources analysis. Laser cladding at the valve’s chamfer was conducted with the laser robotized facility based on ytterbium fiber laser. Quality of the coated surface at the valve’s working chamfer was defined by means of metallographic study and liquid penetrant test.

RESULTS: After laser cladding of the PR-08Kh17N8S6G powder material at the valve’s working chamfer, the uniform coated surface with microhardness of 435–485 HV (44–48 HRC) was obtained.

CONCLUSIONS: The study results may be used for development and implementation of new kinds of wear-resistant surfaces that make it possible to increase the service life and to repair worn-down surfaces of components.

Keywords

ICE / exhaust valve / defects / kinds of wearing / laser cladding / wearing / protective surface

Cite this article

Download citation ▾
Alexey V. Zavitkov, Alexander S. Loktev, Alexander B. Lyukhter. Increasing the wear resistance of the ICE’s valves with the laser cladding method. Izvestiya MGTU MAMI, 2023, 17(3): 217-224 DOI:10.17816/2074-0530-472072

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kwon OG, Han MS. Failure analysis of the exhaust valve stem from a Waukesha P9390 GSI gas engine. Engineering Failure Analysis. 2004;11(3):439–447. doi: 10.1016/j.engfailanal.2003.05.015

[2]

Kwon O.G., Han M.S. Failure analysis of the exhaust valve stem from a Waukesha P9390 GSI gas engine // Engineering Failure Analysis. 2004. Vol. 11, N 3. С. 439–447. doi: 10.1016/j.engfailanal.2003.05.015

[3]

Panţuru M, Chicet D, Paulin C, et al. Wear aspects of internal combustion engine valves. IOP Conf. Ser.: Mater. Sci. Eng. 2016;147:012036. doi: 10.1088/1757-899X/147/1/012036

[4]

Panţuru M., Chicet D., Paulin C., et al. Wear aspects of internal combustion engine valves // IOP Conf. Ser.: Mater. Sci. Eng. 2016. Vol. 147. P. 012036. doi: 10.1088/1757-899X/147/1/012036

[5]

Forsberg P, Hollman P, Jacobson S. Wear mechanism study of exhaust valve system in modern heavy duty combustion engines. Wear. 2011;271(9):2477–2484. doi: 10.1016/j.wear.2010.11.039

[6]

Forsberg P., Hollman P., Jacobson S. Wear mechanism study of exhaust valve system in modern heavy duty combustion engines // Wear. 2011. Vol. 271, N 9. P. 2477–2484. doi: 10.1016/j.wear.2010.11.039

[7]

Raghuwanshi NK, Pandey A, Mandloi RK. Failure analysis of internal combustion engine valves: a review. International Journal of Innovative Research in Science, Engineering and Technology. 2012;1(2):173–181.

[8]

Raghuwanshi N.K., Pandey A., Mandloi R.K. Failure analysis of internal combustion engine valves: a review // International Journal of Innovative Research in Science, Engineering and Technology. 2012. Vol. 1, N 2. P. 173–181.

[9]

Dorfman MR. Thermal spray applications. Advanced Materials & Processes. 2002;160(10):66–69.

[10]

Dorfman M.R. Thermal spray applications // Advanced Materials & Processes. 2002. Vol. 160, N 10. P. 66–69.

[11]

Dorfman MR. Thermal spray basics. Advanced Materials & Processes. 2002;160(7):47–51.

[12]

Dorfman M.R. Thermal spray basics // Advanced Materials & Processes. 2002. Vol. 160, N 7. P. 47–51.

[13]

Malatesta MJ, Barber GC, Larson JM, et al. Development of a laboratory bench test to simulate seat wear of engine poppet valves. Tribology Transactions. 1993;36(4):627–632. doi: 10.1080/10402009308983204

[14]

Malatesta M.J., Barber G.C., Larson J.M., et al. Development of a laboratory bench test to simulate seat wear of engine poppet valves // Tribology Transactions. 1993. Vol. 36, N 4. P. 627–632. doi: 10.1080/10402009308983204

[15]

Forsberg P. Combustion valve wear: a tribological study of combustion valve sealing interfaces. Doctoral thesis. Uppsala; 2013.

[16]

Forsberg P. Combustion valve wear: a tribological study of combustion valve sealing interfaces. Doctoral thesis. Uppsala, 2013.

[17]

Cavalieri FJ, Zenklusen F, Cardona A. Determination of wear in internal combustion engine valves using the finite element method and experimental tests. Mechanism and machine theory. 2016;104:81–99. doi: 10.1016/j.mechmachtheory.2016.05.017

[18]

Cavalieri F.J., Zenklusen F., Cardona A. Determination of wear in internal combustion engine valves using the finite element method and experimental tests // Mechanism and machine theory. 2016. Vol. 104. P. 81–99. doi: 10.1016/j.mechmachtheory.2016.05.017

[19]

Forsberg P, Debord D, Jacobson S. Quantification of combustion valve sealing interface sliding — A novel experimental technique and simulations. Tribology International. 2014;69:150–155. doi: 10.1016/j.triboint.2013.09.014

[20]

Forsberg P., Debord D., Jacobson S. Quantification of combustion valve sealing interface sliding — A novel experimental technique and simulations // Tribology International. 2014. Vol. 69. P. 150–155. doi: 10.1016/j.triboint.2013.09.014

[21]

MAHLE. Engine components and filters. Defects, their causes and prevention. Stuttgart: MAHLE. (In Russ).

[22]

MAHLE. Компоненты двигателей и фильтры. Дефекты, их причины и профилактика. Stuttgart: MAHLE.

[23]

Scott CG, Riga AT, Hong H. The erosion-corrosion of nickel-base diesel engine exhaust valves. Wear. 1995;181:485–494.

[24]

Scott C.G., Riga A.T., Hong H. The erosion-corrosion of nickel-base diesel engine exhaust valves // Wear. 1995. Vol. 181. P. 485–494.

[25]

Cherevan VS. Restoration of parts by welding and surfacing. Methods, methods and processes of technical and technological development. In: Collection of articles based on the results of the International Scientific and Practical Conference. Sterlitamak 2020. Ufa: Agentstvo mezhdunarodnykh issledovaniy; 2020:102–104. (In Russ).

[26]

Черевань В.С. Восстановление деталей сваркой и наплавкой // Способы, методы и процессы технического и технологического развития. Сборник статей по итогам Международной научно-практической конференции. Стерлитамак 2020. Уфа: Агентство международных исследований, 2020. С. 102–104.

[27]

Babanin AYa, Chukharkin AV. Hardening and restorative surfacing of valves of the gas distribution mechanism of internal combustion engines. Sat. scientific tr. Donbass. state tech. in-ta. Iss. 68. Alchevsk; 2021:26–31. (In Russ).

[28]

Бабанин А.Я., Чухаркин А.В. Упрочняющая и восстановительная наплавка клапанов газораспределительного механизма двигателей внутреннего сгорания // Сб. науч. тр. Донбас. гос. техн. ин-та. Вып. 68. Алчевск, 2021. С. 26–31.

[29]

Zavitkov AV, Pechnikov IS. Modern methods of restoring and improving the wear resistance of internal combustion engine parts. In: Actual problems of vehicle operation. Proceedings of the XXIII International Scientific and Practical Conference. Vladimir, November 18–19, 2021. Vladimir: Vladimirskiy gosudarstvennyy universitet im AG i NG Stoletovykh; 2021;111–115. (In Russ).

[30]

Завитков А.В., Печников И.С. Современные методы восстановления и повышения износостойкости деталей двигателя внутреннего сгорания // Актуальные проблемы эксплуатации автотранспортных средств. Материалы XXIII Международной научно-практической конференции. Владимир, 18–19 ноября 2021 года. Владимир: Владимирский государственный университет им. А.Г. и Н.Г. Столетовых, 2021. С. 111–115.

[31]

Zieliński A, Smolenska H, Serbinski W, et al. Characterization of the Co-base layers obtained by laser cladding technique. Journal of Materials Processing Technology. 2005;164:958–963.

[32]

Zieliński A., Smolenska H., Serbinski W., et al. Characterization of the Co-base layers obtained by laser cladding technique // Journal of Materials Processing Technology. 2005. Vol. 164. P. 958–963.

[33]

Lyukhter AB, Palkin PA, Zavitkov AV, et al. Dependence of the structure and characteristics of a Russian alternative for AISI 304 stainless steel powder on the parameters of their laser cladding on substrates from low-carbon and structural steels. IOP Conf. Ser.: Mater. Sci. Eng. 2019;681(1):012028. doi: 10.1088/1757-899X/681/1/012028

[34]

Lyukhter A.B., Palkin P.A., Zavitkov A.V., et al. Dependence of the structure and characteristics of a Russian alternative for AISI 304 stainless steel powder on the parameters of their laser cladding on substrates from low-carbon and structural steels // IOP Conf. Ser.: Mater. Sci. Eng. 2019. Vol. 681, N 1. P. 012028. doi: 10.1088/1757-899X/681/1/012028

[35]

Palkin PA, Lyukhter AB, Zavitkov AV. Experience in developing the technology of laser cladding of powder materials. Laser, plasma research and technologies LAPLAZ-2019. V International Conference. Part 2. 2019. Moscow, February 12–15, 2019. Moscow: NIYaU “MIFI”; 2019:279–281. (In Russ).

[36]

Палкин П.А., Люхтер А.Б., Завитков А.В. Опыт отработки технологии лазерной наплавки порошковых материалов // Лазерные, плазменные исследования и технологии ЛАПЛАЗ-2019. V Международная конференция. Ч. 2. 2019. Москва, 12–15 февраля 2019 года. Москва: НИЯУ «МИФИ», 2019. С. 279–281.

[37]

Gots AN, Lyukhter AB, Gusev DS, et al. Choice of modes of laser cladding of powder PR-08Kh17N8S6G. Chernye metally. 2020;11(1067):46. (In Russ). doi: 10.17580/chm.2020.11.07

[38]

Гоц А.Н., Люхтер А.Б., Гусев Д.С., и др. Выбор режимов лазерной наплавки порошка ПР-08Х17Н8С6Г // Черные металлы. 2020. №. 11(1067). С. 46. doi: 10.17580/chm.2020.11.07

[39]

Gots AN, Gusev DS, Lukhter AB, et al. Selection of rational modes of laser powder cladding. IOP Conf. Ser.: Mater. Sci. Eng. 2020;971(2):022093.

[40]

Gots A.N., Gusev D.S., Lukhter A.B., et al. Selection of rational modes of laser powder cladding // IOP Conf. Ser.: Mater. Sci. Eng. 2020. Vol. 971, N 2. P. 022093.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

59

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/