Modeling of the operation of a disc pump with the wall roughness consideration

Viacheslav A. Cheremushkin , Vladimir O. Lomakin

Izvestiya MGTU MAMI ›› 2023, Vol. 17 ›› Issue (2) : 157 -164.

PDF (1113KB)
Izvestiya MGTU MAMI ›› 2023, Vol. 17 ›› Issue (2) : 157 -164. DOI: 10.17816/2074-0530-321862
Hydraulic and pneumatic systems
research-article

Modeling of the operation of a disc pump with the wall roughness consideration

Author information +
History +
PDF (1113KB)

Abstract

Background: at present, a small number of studies of disk pumps operating on a low-viscosity liquid have been conducted. In addition, among the existing works, numerical calculations are presented, which have a serious discrepancy with the experiments carried out. This article is devoted to numerical simulation of the operation of a disk pump on water, comparison of the calculation results with experimental data.

Aims: to determine the factors affecting the convergence of the main characteristics with experimental data when performing CFD calculations on a low-viscosity liquid.

Methods: in this paper, a numerical modeling method based on the solution of discrete analogs of the basic equations of hydrodynamics is used. To compare CFD calculations with the experiment, a test bench was created on which two configurations of the impeller were studied.

Results: it is shown that for this type of dynamic machines, it is important to take into account the influence of the roughness of solid walls when modeling their operation on a low-viscosity liquid, since it has a significant effect on the characteristics of the disk pump. The obtained characteristics are compared with experimental data, as well as flow patterns in the flow part.

Conclusions: based on the results of the article, it can be argued that taking into account roughness in numerical calculations of a dynamic pump has a positive effect on convergence with experimental data.

Keywords

disc pump / numerical simulation / turbulence / CFD / roughness

Cite this article

Download citation ▾
Viacheslav A. Cheremushkin, Vladimir O. Lomakin. Modeling of the operation of a disc pump with the wall roughness consideration. Izvestiya MGTU MAMI, 2023, 17(2): 157-164 DOI:10.17816/2074-0530-321862

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Misyura VI, Ovsyannikov BV, Prisnyakov VF. Disc pumps. Moscow: Mashinostroenie; 1986. (In Russ.).

[2]

Мисюра В.И., Овсянников Б.В., Присняков В.Ф. Дисковые насосы. М.: Машиностроение, 1986.

[3]

Benderovich VA, Lunatsi ED. Dynamic laminar (disc) friction pumps. Areas of application of ONL pumps. Hydraulics of Bauman Moscow State Technical University. 20214:10-33. (In Russ.).

[4]

Бендерович В.А., Лунаци Э.Д. Динамические ламинарные (дисковые) насосы трения. Области применения насосов ОНЛ // Гидравлика МГТУ имени Н.Э. Баумана. 2022. № 14. С. 10-33.

[5]

Zharkovsky AA, Ivanov OA, Klyuev AS. About the possibility of using disk impellers in low-flow oil pumps. AIP Conference Proceedings. 2022285. doi: 10.1063/5.0026592

[6]

Zharkovsky A.A., Ivanov O.A., Klyuev A.S. About the possibility of using disk impellers in low-flow oil pumps // AIP Conference Proceedings. 2020. Vol. 2285. doi: 10.1063/5.0026592

[7]

Chernyavsky AM, Ruzmatov TM, Fomichev AV, et al. Experimental model of a disk pump to support blood circulation. Bulletin of Transplantology and Artificial Organs. 20118(4):93-101. DOI: 10.15825/1995-1191-2016-4-93-101. (In Russ.).

[8]

Чернявский А.М., Рузматов Т.М., Фомичев А.В. и др. Экспериментальная модель дискового насоса для поддержки кровообращения // Вестник трансплантологии и искусственных органов. 2016. Т. 18, №4. С. 93-101. doi: 10.15825/1995-1191-2016-4-93-101.

[9]

Stenina TV, Elizarova TG, Kraposhin MV. Regularized equations of hydrodynamics in the disk pump modeling problem and their implementation within the OpenFOAM package software package. Preprints of M.V. Keldysh IPM. 20266:1-30. (In Russ.). doi: 10.20948/prepr-2020-66

[10]

Стенина Т.В., Елизарова Т.Г., Крапошин М.В. Регуляризованные уравнения гидродинамики в задаче моделирования дискового насоса и их реализация в рамках программного комплекса OpenFOAM // Препринты ИПМ имени М.В. Келдыша. 2020. №66. С. 1-30. doi: 10.20948/prepr-2020-66

[11]

Petrova EN, Slabozhaninov MV. The use of disc pumps in LRE. Aerospace engineering, high technologies and innovations. 2022:154-157.

[12]

Петрова Е.Н., Слабожанинов М.В. Применение дисковых насосов в ЖРД // Аэрокосмическая техника, высокие технологии и инновации. 2021. Т. 2. С. 154-157.

[13]

Loitsyansky LG. Mechanics of liquid and gas. Moscow: Drofa; 2003. (In Russ.).

[14]

Лойцянский Л.Г. Механика жидкости и газа. М.: Дрофа, 2003.

[15]

Petrov AI, Lomakin VO. Numerical simulation of flow parts of pump models and verification of simulation results by comparing experimentally obtained values with calculated ones. Science and Education. Bauman Moscow State Technical University. Electron. Journal. 2015. (In Russ.). Accessed: Available from: http://old.technomag.edu.ru/doc/356070.html

[16]

Петров А.И., Ломакин В.О. Численное моделирование проточных частей макетов насосов и верификация результатов моделирования путем сравнения экспериментально полученных величин с расчетными. // Наука и образование. МГТУ имени Н.Э. Баумана. Электрон. журн. 2012. № 05. Дата обращения: Режим доступа: http://old.technomag.edu.ru/doc/356070.html

[17]

Lomakin VO, Petrov AI. Verification of calculation results in the package of hydrodynamic modeling zvezda-CMS+ flow part of the centrifugal pump AH 50-32-200. News of higher educational institutions. Sociology. Economy. Politics. 2012:6. (In Russ.).

[18]

Ломакин В.О., Петров А.И. Верификация результатов расчета в пакете гидродинамического моделирования STAR-CCM+ проточной части центробежного насоса АХ 50-32-200 // Известия высших учебных заведений. Социология. Экономика. Политика. 2012. С. 6.

[19]

Lomakin V, Cheremushkin V, Chaburko P. Investigation of vortex and hysteresis effects in the intake device of a centrifugal pump. In: 2018 PhD Symposium of the Global Society of Hydropower, GFPS. Samara: IEEE, 2018. doi: 10.1109/GFPS.2018.8472374.

[20]

Lomakin V., CheremushkinV., Chaburko P. Investigation of vortex and hysteresis effects in the inlet device of a centrifugal pump // 2018 Global Fluid Power Society PhD Symposium, GFPS. Samara: IEEE, 2018. doi: 10.1109/GFPS.2018.8472374.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1113KB)

86

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/