The Study of the Sound Waves Transmission along the Fluid Line through the TsN-2 Electric Pump

Boris P. Brainin , Alexey A. Veselov , Vladimir O. Lomakin , Konstantin G. Mikheev , Alexey I. Petrov

Izvestiya MGTU MAMI ›› 2022, Vol. 16 ›› Issue (2) : 149 -159.

PDF
Izvestiya MGTU MAMI ›› 2022, Vol. 16 ›› Issue (2) : 149 -159. DOI: 10.17816/2074-0530-109243
Hydraulic and pneumatic systems
research-article

The Study of the Sound Waves Transmission along the Fluid Line through the TsN-2 Electric Pump

Author information +
History +
PDF

Abstract

BACKGROUND: Noise at production site or at any other place where technical equipment operates is a huge issue. It has a strong negative effect on human nervous system, reduces average lifespan and causes a number of severe diseases. That is why reduction of noise, produced by pumps, is one of the current priorities of hydraulic engineering.

AIMS: In this study, the experimental research of sound transmission through an operating pump and a non-operating pump was carried out. The aim of the research is to find out, whether the last stage of a multistage pump is the main source of hydrodynamic noise (HDN) in pressure line (or the first stage in suction line), or all stages somehow contribute to HDN.

METHODS: The experiment was carried out on the TsN-2 two-stage impeller pump. In order to generate a sinusoidal signal, an imbedded generator, a vibration test rig and a power amplifier were used. Data acquisition for measurement of HDN and vibrations was performed with use of a conditioning amplifier, a hydrophone and an accelerometer. A 4-channel spectrum analyzer served as a device for processing the studied signal. In addition, a theoretical calculation, considering some physical assumptions, was carried out in order to obtain a more general and accurate concept.

RESULTS: After completing the experiment, hydrodynamic noise levels and differences for three cases were obtained. These cases are for the switched-on pump, the switched-off pump and for the pump with the removed stage. The data obtained with hydrophones (hydrodynamic noise levels) was correlated with the data obtained with accelerometers (vibration levels). As the correlated data analysis result, the sound insolation distribution over the spectrum was obtained.

CONCLUSIONS: According to the study results, it can be concluded that the absence of one of two stages ambiguously affected on the sound-insolation properties of the pump. Moreover, no firm conclusions can be drawn about the pump operation influence on the change in its sound-insolation properties.

Keywords

centrifugal pump / hydrodynamic noise / experimental study of sound waves transmission / sound-insolation properties of components

Cite this article

Download citation ▾
Boris P. Brainin, Alexey A. Veselov, Vladimir O. Lomakin, Konstantin G. Mikheev, Alexey I. Petrov. The Study of the Sound Waves Transmission along the Fluid Line through the TsN-2 Electric Pump. Izvestiya MGTU MAMI, 2022, 16(2): 149-159 DOI:10.17816/2074-0530-109243

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gorin SB, Kim YaA, Lesnyak AN, et al. O sposobe eksperimental’nogo opredeleniya parametrov pere-dachi kolebanii po zhidkostnomu traktu elementov gidravlicheskikh system. Akusticheskii zhurnal. 1986;32(4):529–533. (In Russ).

[2]

Горин С.Б., Ким Я.А., Лесняк А.Н., и др. О способе экспериментального определения параметров передачи колебаний по жидкостному тракту элементов гидравлических систем // Акустический журнал. 1986. Т. 32, № 4. С. 529–533.

[3]

Isakovich MA. Obshchaya akustika. Moskva: Nauka; 1973. (In Russ).

[4]

Исакович М.А. Общая акустика. Москва: Наука, 1973.

[5]

Brainin BP. Zvukootrazhayushchie svoistva tsentrobezhnogo nasosa v ekspluatatsii. In: Silovye i gidravlicheskie vzaimodeistviya v nasosakh: collection of works. Moscow; 1993. Р. 88–93. (In Russ).

[6]

Брайнин Б.П. Звукоотражающие свойства центробежного насоса в эксплуатации // Силовые и гидравлические взаимодействия в насосах: сборник АО НПО «Гидромаш». Москва, 1993. С. 88–93.

[7]

Bukreev YuN, Pilipenko VV, Zadontsev VA, et al. Eksperimental’noe i teoreticheskoe opredelenie vkhodnogo impedansa shnekotsentrobezhnogo nasosa. In: Kavitatsionnye avtokolebaniya v nasosnykh sistemakh: collection of articles. Vol. 2. Kiev: Naukova dumka; 1976. Р. 68–73. (In Russ).

[8]

Букреев Ю.Н., Пилипенко В.В., Задонцев В.А., и др. Экспериментальное и теоретическое определение входного импеданса шнекоцентробежного насоса // Кавитационные автоколебания в насосных системах: сб. статей. Т. 2. Киев: Наукова думка, 1976. С. 68–73.

[9]

Brennen C, Acosta AJ. Theoretical, quasi-static analysis of cavitation compliance in turbopumps. Journal of Spacecraft and Rockets. 1973;10(3):175–180. doi: 10.2514/3.27748

[10]

Brennen C., Acosta A.J. Theoretical, quasi-static analysis of cavitation compliance in turbopumps // Journal of Spacecraft and Rockets. 1973. Vol. 10, N 3. Р. 175–180. doi: 10.2514/3.27748

[11]

Wood GM, Murphy JS, Farquhar J. An experimental study of cavitation in a mixed flow pump impeller. Journal of Basic Engineering. 1960;82(4):929–940. doi: 10.1115/1.3662806

[12]

Wood G.M., Murphy J.S., Farquhar J. An experimental study of cavitation in a mixed flow pump impeller // Journal of Basic Engineering. 1960. Vol. 82, N 4. Р. 929–940. doi: 10.1115/1.3662806

[13]

Zhang Y, Ji K, He T, et al. Shuili Fadian Xuebao / Journal of Hydroelectric Engineering. 2021;40(11):59–71.

[14]

Zhang Y., Ji K., He T., et al. Shuili Fadian Xuebao // Journal of Hydroelectric Engineering. 2021. Vol. 40, N 11. Р. 59–71.

[15]

Cao R, Yuan J, Deng F, et al. Numerical method to predict vibration characteristics induced by cavitation in centrifugal pumps. Measurement Science and Technology. 2021;32(11). doi: 10.1088/1361-6501/ac1181

[16]

Cao R., Yuan J., Deng F., et al. Numerical method to predict vibration characteristics induced by cavitation in centrifugal pumps // Measurement Science and Technology. 2021. Vol. 32, N 11. doi: 10.1088/1361-6501/ac1181

[17]

Bishtawi BA, Scribano G, Tran MV. Numerical study of blade roughness effect on cavitation in centrifugal pumps. Journal of Physics: Conference Series. 2021;2051(1):012047. doi: 10.1088/1742-6596/2051/1/012047

[18]

Bishtawi B.A., Scribano G., Tran M.V. Numerical study of blade roughness effect on cavitation in centrifugal pumps // Journal of Physics: Conference Series. 2021. Vol. 2051, N 1. Р. 012047. doi: 10.1088/1742-6596/2051/1/012047

[19]

Ye T, Si Q, Shen C, et al. Monitoring of primary cavitation of centrifugal pump based on support vector machine. Paiguan Jixie Gongcheng Xuebao / Journal of Drainage and Irrigation Machinery Engineering. 2021;39(9):884–889.

[20]

Ye T., Si Q., Shen C., et al. Monitoring of primary cavitation of centrifugal pump based on support vector machine // Journal of Drainage and Irrigation Machinery Engineering. 2021. Vol. 39, N 9. Р. 884–889.

[21]

Guo X, Yang S, Li X, et al. The tip clearance cavitation mechanism of a high-speed centrifugal pump with a splitter-bladed inducer. Processes. 2021;9(9):1576. doi: 10.3390/pr9091576

[22]

Guo X., Yang S., Li X., et al. The tip clearance cavitation mechanism of a high-speed centrifugal pump with a splitter-bladed inducer // Processes. 2021. Vol. 9, N 9. Р. 1576. doi: 10.3390/pr9091576

[23]

Jiang F, Li H, Liu X, Fu J. Transient cavitation characteristics of compound centrifugal impeller. In: 12th International Conference on Mechanical and Aerospace Engineering (ICMAE). Athens, Greece, 16–19 July. 2021. Р. 245–250.

[24]

Jiang F., Li H., Liu X., et al. Transient cavitation characteristics of compound centrifugal impeller // 12th International Conference on Mechanical and Aerospace Engineering (ICMAE). Athens, Greece, 16-19 July. 2021. Р. 245–250.

[25]

Aksenova E, Lomakin V, Cheremushkin V. Experimental study of cavitation resistance of restoring coatings. IOP Conference Series: Materials Science and Engineering. 2020;779(1):012045. doi: 10.1088/1757-899X/779/1/012045

[26]

Aksenova E., Lomakin V., Cheremushkin V. Experimental study of cavitation resistance of restoring coatings // IOP Conference Series: Materials Science and Engineering. 2020. Vol. 779, N 1. Р. 012045. doi: 10.1088/1757-899X/779/1/012045

[27]

Lomakin V, Bibik O. Numerical prediction of the gas content effect on the cavitation characteristics of the pump using the simplified Rayleigh-Plesset equation. IOP Conference Series: Materials Science and Engineering. 2019;492(1):012037. doi: 10.1088/1757-899X/492/1/012037

[28]

Lomakin V., Bibik O. Numerical prediction of the gas content effect on the cavitation characteristics of the pump using the simplified Rayleigh-Plesset equation // IOP Conference Series: Materials Science and Engineering. 2019. Vol. 492, N 1. Р. 012037. doi: 10.1088/1757-899X/492/1/012037

[29]

Lomakin VO, Kuleshova MS, Kraeva EA. Fluid flow in the throttle channel in the presence of cavitation. Procedia Engineering. 2015;106:27–35. doi: 10.1016/j.proeng.2015.06.005

[30]

Lomakin V.O., Kuleshova M.S., Kraeva E.A. Fluid flow in the throttle channel in the presence of cavitation // Procedia Engineering. 2015. Vol. 106. Р. 27–35. doi: 10.1016/j.proeng.2015.06.005

[31]

Trulev A, Kayuda M, Timushev S, et al. Conceptual features for improving the flow part of the multiphase stages of ESP submersible plants for small and medium feeds for extracting stratal liquid with a high free gas content. IOP Conference Series: Materials Science and Engineering. 2020;779(1):012042. doi: 10.1088/1757-899x/779/1/012042

[32]

Trulev A., Kayuda M., Timushev S., et al. Conceptual features for improving the flow part of the multiphase stages of ESP submersible plants for small and medium feeds for extracting stratal liquid with a high free gas content // IOP Conference Series: Materials Science and Engineering. 2020. Vol. 779, N 1. Р. 012042. doi: 10.1088/1757-899x/779/1/012042

[33]

Gradilenko N, Lomakin V. Overview of methods for optimizing the flow of the centrifugal pump. IOP Conference Series: Materials Science and Engineering. 2020;963(1):012016. doi: 10.1088/1757-899x/963/1/012016

[34]

Gradilenko N., Lomakin V. Overview of methods for optimizing the flow of the centrifugal pump // IOP Conference Series: Materials Science and Engineering. 2020. Vol. 963, N 1. Р. 012016. doi: 10.1088/1757-899x/963/1/012016

[35]

Trulev A, Timushev S, Lomakin V. Conceptual features of improving the flow-through parts of gas separators of submersible electric pumps systems f for the production of formation fluid in order to improve the separating properties, energy efficiency and reliability. IOP Conference Series: Materials Science and Engineering. 2020;779(1):012036. doi: 10.1088/1757-899x/779/1/012036

[36]

Trulev A., Timushev S., Lomakin V. Conceptual features of improving the flow-through parts of gas separators of submersible electric pumps systems f for the production of formation fluid in order to improve the separating properties, energy efficiency and reliability // IOP Conference Series: Materials Science and Engineering. 2020. Vol. 779, N 1. Р. 012036. doi: 10.1088/1757-899x/779/1/012036

[37]

Yan Z, Gu J, Zhao J. Experimental study on hydraulic performance optimization of pump house with ultra-short forebay. Journal of Physics: Conference Series. 2021;2044(1):012020. doi: 10.1088/1742-6596/2044/1/012020

[38]

Yan Z., Gu J., Zhao J. Experimental study on hydraulic performance optimization of pump house with ultra-short forebay // Journal of Physics: Conference Series. 2021. Vol. 2044, N 1. Р. 012020. doi: 10.1088/1742-6596/2044/1/012020

[39]

Fu J, Jiang Y, Li H, et al. Optimization design of sliding bearing of fuel pump based on CFD method. In: 12th International Conference on Mechanical and Aerospace Engineering (ICMAE). Athens, Greece, 16–19 July. 2021. Р. 546–551.

[40]

Fu J., Jiang Y., Li H., et al. Optimization design of sliding bearing of fuel pump based on CFD method // 12th International Conference on Mechanical and Aerospace Engineering (ICMAE). Athens, Greece, 16-19 July. 2021. Р. 546–551.

[41]

Zatti M, Moncecchi M, Gabba M, et al. Energy communities design optimization in the Italian framework. Applied Sciences. 2021;11(11). doi: 10.3390/app11115218

[42]

Zatti M., Moncecchi M., Gabba M., et al. Energy communities design optimization in the Italian framework // Applied Sciences. 2021. Vol. 11, N 11. doi: 10.3390/app11115218

[43]

Liao WW, Wu RK, Fan YW, et al. The hydraulic design and optimization for ultra-thin centrifugal micropump. Journal of Engineering Thermophysics. 2021;42(5):1251–1256.

[44]

Liao W.W., Wu R.K., Fan Y.W., et al. The hydraulic design and optimization for ultra-thin centrifugal micropump // Kung Cheng Je Wu Li Hsueh Pao / Journal of Engineering Thermophysics. 2021. Vol. 42, N 5. Р. 1251–1256.

[45]

Hieninger T, Goppelt F, Schmidt-Vollus R, et al. Energy-saving potential for centrifugal pump storage operation using optimized control schemes. Energy Efficiency. 2021;14(2):1–14. doi: 10.1007/s12053-021-09932-5

[46]

Hieninger T., Goppelt F., Schmidt-Vollus R. et al. Energy-saving potential for centrifugal pump storage operation using optimized control schemes // Energy Efficiency. 2021. Vol. 14, N 2. Р. 1–14. doi: 10.1007/s12053-021-09932-5

[47]

Lomakin V, Valiev T, Chaburko P. Application of optimization algorithms to improve the vibroacoustic characteristics of pumps. IOP Conference Series: Materials Science and Engineering. 2020;779(1):012044. doi: 10.1088/1757-899X/779/1/012044

[48]

Lomakin V., Valiev T., Chaburko P. Application of optimization algorithms to improve the vibroacoustic characteristics of pumps // IOP Conference Series: Materials Science and Engineering. 2020. Vol. 779, N 1. Р. 012044. doi: 10.1088/1757-899X/779/1/012044

[49]

Lomakin VO, Chaburko PS, Kuleshova MS. Multi-criteria optimization of the flow of a centrifugal pump on energy and vibroacoustic characteristics. Procedia Engineering. 2017;176:476–482. doi: 10.1016/j.proeng.2017.02.347

[50]

Lomakin V.O., Chaburko P.S., Kuleshova M.S. Multi-criteria optimization of the flow of a centrifugal pump on energy and vibroacoustic characteristics // Procedia Engineering. 2017. Vol. 176. Р. 476–482. doi: 10.1016/j.proeng.2017.02.347

[51]

Dyson G. Impeller relate to reduce hydraulically generated vibration. In: 13 Proceedings of the Twenty-Second International Pump Users Symposium; 2005. https://doi.org/10.21423/R1X961

[52]

Dyson G. Impeller relate to reduce hydraulically generated vibration // 13 Proceedings of the Twenty-Second International Pump Users Symposium; 2005. https://doi.org/10.21423/R1X961

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/