Forecasting the magnitude of the electrical load in electrical complexes of aircraft
Alekcander E. Chernov , Ruslan A. Maleev , Dmitry A. Eroshkin , Elena N. Fedorenko
Izvestiya MGTU MAMI ›› 2022, Vol. 16 ›› Issue (1) : 99 -106.
Forecasting the magnitude of the electrical load in electrical complexes of aircraft
BACKGROUND: The issue of forecasting, analysis and control of electrical load becomes more significant both within the framework of the electrical complex of the summer apparatus as a whole, and for certain groups of electric energy consumers. Forecasting the electrical load is necessary to solve the problem of optimizing the operational state of an electrical complex or system, under constantly changing conditions and changing environment, which entails a change in power. Recently, a relatively new method has often been used, which is based on fuzzy logic. This method is a symbiosis of fuzzy logic and neural networks, which includes the main properties characteristic of these areas. Thanks to the use of a well-established fuzzy neural technology implemented in a correctly designed and trained fuzzy neural network for predicting electrical loads, it became possible to ensure sufficiently high accuracy and speed of load prediction.
AIMS: The purpose of the work is to analyze methods for predicting the electrical load of the aircraft’s electrical and technical complex, as well as to determine the most optimal methodology for predicting the electrical load of an autonomous aircraft used in the armed forces.
METHODS: Modeling of working conditions is performed in the Matlab program and its applications – Simulink. At the same time, with the help of the fundamental blocks of this application, models of the physical components of the electrical complex of the aircraft are created.
RESULTS: For a substantive assessment of the prediction of the magnitude of the electrical load of the electrical complex of the aircraft, an algorithm implemented on a computer has been developed. It provides for the implementation of retrospective calculations taking into account the amount of power generated, the duration of operation and the flow of electricity in the electrical complex as a whole.
CONCLUSIONS: Due to the use of a well-established fuzzy neural technology for predicting electrical loads, implemented in a correctly designed and equipped fuzzy neural network, it became possible to provide the necessary accuracy and speed of predicting electrical loads.
forecasting / electrical load / power flow / prediction accuracy / autoregression method
| [1] |
Charytoniuk W, Chen MS. Short-term Forecasting in Power Systems Using a General Regression Neural Network. IEEE Transactions on Power Systems. 1995;7(1). |
| [2] |
Charytoniuk W., Chen M.S. Short-term Forecasting in Power Systems Using a General Regression Neural Network // IEEE Transactions on Power Systems. 1995. Vol. 7, N 1. |
| [3] |
Gordeev VI, Vasil’ev IE, Shchutskii VI. Upravlenie elektropotrebleniem i ego prognozirovanie. Rostov-on-Don: Izdatel’stvo Rostovskogo universiteta; 1991. (In Russ). |
| [4] |
Гордеев В.И., Васильев И.Е., Щуцкий В.И. Управление электропотреблением и его прогнозирование. Ростов-на-Дону: Издательство Ростовского университета, 1991. |
| [5] |
Bunn DH, Farmer ED. Comparative models for electrical load forecasting. Moscow: Energoatomizdat, 1987. (In Russ). |
| [6] |
Бэнн Д.В., Фармер Е.Д. Сравнительные модели прогнозирования электрической нагрузки. Москва: Энергоатомиздат, 1987. |
| [7] |
Srinivasan D, Tan SS, Chang CS, Chan EK. Practical implementation of a hybrid fuzzy neural network for one-day-ahead load forecasting. IEE Proceedings – Generation, Transmission and Distribution. 1998;145(6):687–692. doi: 10.1049/ip-gtd:19982363 |
| [8] |
Srinivasan D., Tan S.S., Chang C.S., Chan E.K. Practical implementation of a hybrid fuzzy neural network for one-day-ahead load forecasting // IEE Proceedings – Generation, Transmission and Distribution. 1998. Vol. 145, N 6. P. 687–692. doi: 10.1049/ip-gtd:19982363 |
| [9] |
Leonenkov AV. Nechetkoe modelirovanie v srede MATLAB i fuzzy TECH. Saint Petersburg: BKhV-Peterburg; 2003. (In Russ). |
| [10] |
Леоненков А.В. Нечеткое моделирование в среде MATLAB и fuzzy TECH. Санкт-Петербург: БХВ-Петербург, 2003. |
| [11] |
Gordeev VK, Nadtoka II. Vzaimnaya korrelyatsiya v raschetakh kharakteristik grafikov elektricheskoi nagruzki. Elektrichestvo. 1978;(8):17-21. (In Russ). |
| [12] |
Гордеев В.К., Надтока И.И. Взаимная корреляция в расчетах характеристик графиков электрической нагрузки // Электричество. 1978. №8. С. 17–21. |
| [13] |
Gordeev VI. Raschet dispersii grafikov elektricheskoi nagruzki. Elektrichestvo. 1971;(10):86–88. (In Russ). |
| [14] |
Гордеев В.И. Расчет дисперсии графиков электрической нагрузки // Электричество. 1971. № 10. С. 86-88. |
| [15] |
Alekseeva IY, Stepanov VP, Vedernikov AS. Metod eksponentsial’nogo sglazhivaniya linii trenda vremennogo ryada v sochetanii s metodom indeksov sezonnosti pri kratkosrochnom prognozirovanii elektropotrebleniya. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki. 2008;(1):137–143. (In Russ). |
| [16] |
Алексеева И.Ю., Степанов В.П., Ведерников А.С. Метод экспоненциального сглаживания линии тренда временного ряда в сочетании с методом индексов сезонности при краткосрочном прогнозировании электропотребления // Вестник Самарского государственного технического университета. Серия: Технические науки. 2008. № 1. С. 137-143. |
| [17] |
Lukashin YG. Adaptivnye metody kratkosrochnogo prognozirovaniya. Moscоw: Statistika; 1972. (In Russ). |
| [18] |
Лукашин Ю.Г. Адаптивные методы краткосрочного прогнозирования. Москва: Статистика, 1972. |
| [19] |
Gordeev VI, Vasil’ev IE, Shutskii VI. Upravlenie elektropotrebleniem i ego prognozirovanie. Rostov-on-Don: Izd-vo RGU; 1991. (In Russ). |
| [20] |
Гордеев В.И., Васильев И.Е., Шуцкий В.И. Управление электропотреблением и его прогнозирование. Ростов-на-Дону: Изд-во РГУ, 1991. |
Chernov A.E., Maleev R.A., Eroshkin D.A., Fedorenko E.N.
/
| 〈 |
|
〉 |