Influence of an impeller inlet diameter on operation of a high-speed submersible electric pump at the high flow rate modes

Daniil A. Gorbatov , Alexander A. Zharkovsky , Artemy V. Adrianov

Izvestiya MGTU MAMI ›› 2022, Vol. 16 ›› Issue (3) : 219 -224.

PDF
Izvestiya MGTU MAMI ›› 2022, Vol. 16 ›› Issue (3) : 219 -224. DOI: 10.17816/2074-0530-104441
Hydraulic and pneumatic systems
research-article

Influence of an impeller inlet diameter on operation of a high-speed submersible electric pump at the high flow rate modes

Author information +
History +
PDF

Abstract

BACKGROUND: The study object is a high-speed drainage submersible electric pump, aimed to water polluted sea and fresh water bailing out of drowned rooms of shipbuilding industry facilities.

AIMS: To obtain dependencies of pump cavitation properties on relative diameter of an impeller inlet at the high flow rate modes, to determine the kind of head-capacity and energy properties of a pump for various geometrical ratios of an impeller in the flow rate operational range.

METHODS: Main geometrical properties of impellers were determined with use of semi-empirical formulas of various authors’ methods. For the study of dependencies, three options of impellers were chosen and series of fluid dynamic simulations of three-dimensional flow of viscous fluid with use of the ANSYS CFX software were completed.

RESULTS: Head-capacity, energy and cavitation properties of the pumping unit were obtained. The experimental head-capacity curve correlates to the simulated one. The simulation results revealed that using of narrowed impeller inlet leads to generation of wide low-pressure area at the backside of the impeller vane and disruption of operational curves at the high flow rate modes. With the biggest relative diameter of the impeller inlet, the vapor pressure area at the backside of the impeller is absent so there is no disruption of operational curves at the high flow rate modes, however, the pump hydraulic efficiency ratio at the whole range of flow rate is the lowest among all the studied options of impellers.

CONCLUSIONS: The method of defining the value of an impeller inlet diameter, optimal with regard to energy and cavitation properties, to ensure cavitation free operation of a high-speed submersible electric pump at the whole range of flow rate is proposed.

Keywords

submersible electric pump / finite volume method / turbulence model / equivalent roughness / backside of vane / vapor pressure

Cite this article

Download citation ▾
Daniil A. Gorbatov, Alexander A. Zharkovsky, Artemy V. Adrianov. Influence of an impeller inlet diameter on operation of a high-speed submersible electric pump at the high flow rate modes. Izvestiya MGTU MAMI, 2022, 16(3): 219-224 DOI:10.17816/2074-0530-104441

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zharkovskiy AA, Kurikov NN, Pugachev PV, et al. Computer research and visualization of flow in centrifugal pumps. Nauchno-tekhnicheskie vedomosti SPbGPU. Informatika. Telekommunikatsii. Upravlenie. 2010;4(103):119–123. (in Russ).

[2]

Жарковский А.А., Куриков Н.Н., Пугачев П.В., и др. Компьютерное исследование и визуализация течения в центробежных насосах // Научно-технические ведомости СПбГПУ. Информатика. Телекоммуникации. Управление. 2010. № 4(103). С. 119–123.

[3]

ANSYS CFX Tutorial Guide. Release 17.2. ANSYS Inc.

[4]

ANSYS CFX Tutorial Guide. ANSYS Inc. Release 17.2.

[5]

Garbaruk AV, Strelets MKh, Travin AK, et al. Sovremennye podkhody k modelirovaniyu turbulentnosti: uch. pos. St. Petersburg.: Izd-vo Politekh. un-ta; 2016. (in Russ).

[6]

Гарбарук А.В., Стрелец М.Х., Травин А.К., и др. Современные подходы к моделированию турбулентности: уч. пос. СПб.: Изд-во Политех. ун-та, 2016.

[7]

Gorgidzhanyan SA. Gidravlicheskie raschety protochnoy chasti tsentrobezhnykh nasosov: metodicheskie ukazaniya po kursovomu proektirovaniyu. Leningrad: LPI im. MI Kalinina; 1982. (in Russ).

[8]

Горгиджанян С.А. Гидравлические расчеты проточной части центробежных насосов: методические указания по курсовому проектированию. Ленинград: ЛПИ им. М.И. Калинина, 1982.

[9]

Graueser TE. Abaque pour pompes et pompesturbines reversibl. Lausanne: Institut de machines hydraulignes; 1978.

[10]

Graueser T.E. Abaque pour pompes et pompes-turbines reversibl. Lausanne: Institut de machines hydraulignes, 1978.

[11]

Gulich JF. Centrifugal Pumps. Berlin, Heidelberg: Springer-Verlag; 2010.

[12]

Gulich J.F. Centrifugal Pumps. Berlin, Heidelberg: Springer-Verlag, 2010.

[13]

Mikhaylov AK, Malyushenko VV. Lopastnye nasosy. Teoriya, raschet i konstruirovanie. Moscow: Mashinostroenie; 1977. (in Russ).

[14]

Михайлов А.К., Малюшенко В.В. Лопастные насосы. Теория, расчет и конструирование. М.: Машиностроение, 1977.

RIGHTS & PERMISSIONS

Gorbatov D.A., Zharkovsky A.A., Adrianov A.V.

AI Summary AI Mindmap
PDF

61

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/