The influence of epigenetic regulation on development of multifactorial diseases

Natalya V. Vokhmyanina , Natalya E. Golovanova

Russian Family Doctor ›› 2024, Vol. 28 ›› Issue (4) : 39 -49.

PDF
Russian Family Doctor ›› 2024, Vol. 28 ›› Issue (4) : 39 -49. DOI: 10.17816/RFD636548
Review
research-article

The influence of epigenetic regulation on development of multifactorial diseases

Author information +
History +
PDF

Abstract

Multifactorial diseases pose a growing challenge to global healthcare due to their rapidly increasing prevalence, high mortality rates, and significant contribution to disability among the working-age population. Intensive research aimed at improving early diagnosis, prevention, and treatment has underscored the critical role of epigenetic changes, which influence gene expression without altering the primary DNA sequence. This article provides an overview of the primary epigenetic mechanisms involved in gene expression regulation, including DNA methylation, post-translational histone modifications, and the role of non-coding microRNAs in gene silencing. Epigenetic factors serve as a bridge between the genome and environmental influences. Environmental risk factors—shaped by lifestyle, behavior, ecological exposures, and psycho-emotional stress—play a significant role in the phenotypic manifestations of diseases and overall human health. The reversibility of epigenetic mechanisms regulating gene expression can lead to both beneficial and adverse health outcomes. The continuous development of new technologies positions epigenetics as a promising field for functional research, with the potential to fundamentally transform therapeutic approaches to the treatment of multifactorial diseases.

Keywords

multifactorial diseases / epigenetics / epigenetic markers / DNA methylation / post-translational histone modifications / non-coding RNAs

Cite this article

Download citation ▾
Natalya V. Vokhmyanina, Natalya E. Golovanova. The influence of epigenetic regulation on development of multifactorial diseases. Russian Family Doctor, 2024, 28(4): 39-49 DOI:10.17816/RFD636548

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bichurin DR, Atmaikina OV, Cherepanova OA. Cardiovascular diseases. A regional aspect. International Research Journal. 2023;(8(134)):116. EDN: JMQBSO doi: 10.23670/IRJ.2023.134.103

[2]

Бичурин Д.Р., Атмайкина О.В., Черепанова О.А. Сердечно-сосудистые заболевания. Региональный аспект // Международный научно-исследовательский журнал. 2023. № 8(134). C. 116. EDN: JMQBSO doi: 10.23670/IRJ.2023.134.103

[3]

Baranov VS, Baranova EV. Human genome, Epigenetics of complex diseases, and personalized medicine. Biosphera. 2012;4(1):76–85. EDN: OWKFFD

[4]

Баранов В.С., Баранова Е.В. Геном человека, эпигенетика многофакторных болезней и персонифицированная медицина // Биосфера. 2012. Т. 4, № 1. С. 76–85. EDN: OWKFFD

[5]

Dedov II, Shestakova MV, Vikulova OK, et al. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes mellitus. 2023;26(2):104–123. EDN: DVDJWJ doi: 10.14341/DM13035

[6]

Дедов И.И., Шестакова М.В., Викулова О.К., и др. Сахарный диабет в Российской Федерации: динамика эпидемиологических показателей по данным Федерального регистра сахарного диабета за период 2010–2022 гг. // Сахарный диабет. 2023. Т. 26, № 2. С. 104–123. EDN: DVDJWJ doi: 10.14341/DM13035

[7]

Rotar OP, Ilyanova IN, Boyarinova MA, et al. 2023 All-Russian screening for hypertension: results. Russian Journal of Cardiology. 2024;29(5):78–88. EDN: EMCJRB doi: 10.15829/1560-4071-2024-5931

[8]

Ротарь О.П., Ильянова И.Н., Бояринова М.А., и др. Результаты Всероссийского скрининга артериальной гипертензии 2023 // Российский кардиологический журнал. 2024. Т. 29, № 5. С. 78–88. EDN: EMCJRB doi: 10.15829/1560-4071-2024-5931

[9]

Utochkin YuA, Lobanova YuI, Yakshina AD. Cardiovascular diseases in Russia: a review of statistics. Nauka cherez prizmu vremeni. 2024;(1(82)):61–63. (In Russ). EDN: ZHZDCD

[10]

Уточкин Ю.А., Лобанова Ю.И., Якшина А.Д. Сердечно-сосудистые заболевания в России: обзор статистики // Наука через призму времени. 2024. № 1(82). С. 61–63. EDN: ZHZDCD

[11]

Singh P, Arora A, Strand TA, et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16(6):823–836. doi: 10.1016/j.cgh.2017.06.037

[12]

Singh P., Arora A., Strand T.A., et al. Global prevalence of celiac disease: systematic review and meta-analysis // Clin Gastroenterol Hepatol. 2018. Vol. 16, N 6. P. 823–836. doi: 10.1016/j.cgh.2017.06.037

[13]

Baranov VS. The “epigenetic landscape” hypothesis implicated in development of major obstetric conditions, such as endometriosis, uterine leiomyoma, and preeclampsia. Patogenez (Pathogenesis). 2017;15(3):4–11. EDN: ZWOHQP doi: 10.25557/GM.2017.3.8492

[14]

Баранов В.С. Новое в патогенетике мультифакторных заболеваний на примере главных акушерских синдромов: эндометриоза, миомы матки и гестоза // Патогенез. 2017. Т. 15, № 3. С. 4–11. EDN: ZWOHQP doi: 10.25557/GM.2017.3.8492

[15]

Glotov OS, Chernov AN, Glotov AS. Human exome sequencing and prospects for predictive medicine: analysis of international data and own experience. J Pers Med. 2023;13(8):1236. doi: 10.3390/jpm13081236

[16]

Глотов О.С., Чернов А.Н., Глотов А.С. Секвенирование экзома человека и перспективы предиктивной медицины: анализ международных данных и собственный опыт // Журнал персонализированной медицины. 2023. Т. 13, № 8. С. 1236. doi: 10.3390/jpm13081236

[17]

Puzyrev VP. Multifactorial diseases. In: Bochkov NP, Ginter ЕК, Puzyrev VP, editors. Hereditary diseases: national guidelines. Moscow: GEOTAR-Media; 2013. P. 610–660. (In Russ.)

[18]

Пузырев В.П. Многофакторные заболевания. Наследственные болезни: национальное руководство / под ред. Н.П. Бочкова, Е.К. Гинтера, В.П. Пузырева. Москва: ГЭОТАР-Медиа, 2013. С. 610–660.

[19]

Inge-Vechtomov SG, Borchsenius AS, Zadorskij SP. Protein inheritance: conformational matrices and epigenetics. VOGiS Herald. 2004;8(29):60–66. (In Russ.) EDN: HRSMBJ

[20]

Инге-Вечтомов С.Г., Борхсениус А.С., Задорский С.П. Белковая наследственность: конформационные матрицы и эпигенетика // Информационный вестник ВОГИС. 2004. Т. 8, № 29. С. 60–66. EDN: HRSMBJ

[21]

Inge-Vechtomov SG. Variation. Phenomenology and mechanisms. Vavilov journal of genetics and breeding. 2013;17(4/2):791–804. (In Russ.) EDN: RVGWIP

[22]

Инге-Вечтомов С.Г. Проблема изменчивости. Феноменология и механизмы // Вавиловский журнал генетики и селекции. 2013. Т. 17, № 4/2. С. 791–804. EDN: RVGWIP

[23]

Pal’cev MA. Medicine of the future. Personalized medicine: experience of the past, realities of tomorrow. Moscow: Russian Academy of Sciences; 2020. 152 с. (In Russ.) EDN: RRCGRM

[24]

Пальцев М.А. Медицина будущего. Персонализированная медицина: опыт прошлого, реалии завтрашнего дня. Москва: Российская академия наук, 2020. 152 с. EDN: RRCGRM

[25]

Belushkina NN, Chemezov AS, Pal’tsev MA. Genetic studies of multifactorial diseases in the concept of personalized medicine. Russian Journal of Preventive Medicine. 2019;22(3):26–30. EDN: NSNEAG doi: 10.17116/profmed20192203126

[26]

Белушкина Н.Н., Чемезов А.С., Пальцев М.А. Генетические исследования мультифакториальных заболеваний в концепции персонализированной медицины // Профилактическая медицина. 2019. Т. 22, № 3. С. 26–30. EDN: NSNEAG doi: 10.17116/profmed20192203126

[27]

Ramanouskaya TV. Epigenetics: electronic educational and methodological complex for specialty 1-3180 01 “Biology”. Minsk: BSU; 2022. 88 p. (In Russ.)

[28]

Романовская Т.В. Эпигенетика: электронный учебно-методический комплекс для специальности 1-3180 01 «Биология». Минск: БГУ, 2022. 88 c.

[29]

Smirnov VV, Leonov GE. Epigenetics: theoretical aspects and practical value. Lechaschi Vrach. 2016;(12):26–30. (In Russ.) EDN: XWQGNT

[30]

Смирнов В.В., Леонов Г.Е. Эпигенетика: теоретические аспекты и практическое значение // Лечащий врач. 2016. № 12. С. 26–30. EDN: XWQGNT

[31]

Georgiev GP. Mobile genetic elements in animal cells and their biological significance. Eur J Biochem. 1984;145(2):203–220. doi: 10.1111/j.1432-1033.1984.tb08541.x

[32]

Georgiev G.P. Mobile genetic elements in animal cells and their biological significance // Eur J Biochem. 1984. Vol. 145, N 2. P. 203–220. doi: 10.1111/j.1432-1033.1984.tb08541.x

[33]

Xuan D, Han Q, Tu Q, et al. Epigenetic modulation in periodontitis: interaction of adiponectin and JMJD3-IRF4 axis in macrophages. J Cell Physiol. 2016;231(5):1090–1096. doi: 10.1002/jcp.25201

[34]

Xuan D., Han Q., Tu Q., et al. Epigenetic modulation in periodontitis: interaction of adiponectin and JMJD3-IRF4 axis in macrophages // J Cell Physiol. 2016. Vol. 231, N 5. P. 1090–1096. doi: 10.1002/jcp.25201

[35]

Stamp MA, Hadfield JD. The relative importance of plasticity versus genetic differentiation in explaining between population differences; a meta-analysis. Ecol Lett. 2020;23(10):1432–1441. doi: 10.1111/ele.13565

[36]

Stamp M.A., Hadfield J.D. The relative importance of plasticity versus genetic differentiation in explaining between population differences; a meta-analysis // Ecol Lett. 2020. Vol. 23, N 10. P. 1432–1441. doi: 10.1111/ele.13565

[37]

Kiselev VI. Epigenetics opens up enormous therapeutic and diagnostic possibilities. Nacional’naya onkologicheskaya programma – 2030. 2022;(1):30–33. (In Russ.)

[38]

Киселев В.И. Эпигенетика открывает колоссальные терапевтические и диагностические возможности // Национальная онкологическая программа – 2030. 2022. № 1. С. 30–33.

[39]

Oppermann U. Why is epigenetics important in understanding the pathogenesis of inflammatory musculoskeletal diseases? Arthritis Res Ther. 2013;15(2):209. doi: 10.1186/ar4186

[40]

Oppermann U. Why is epigenetics important in understanding the pathogenesis of inflammatory musculoskeletal diseases? // Arthritis Res Ther. 2013. Vol. 15, N 2. P. 209. doi: 10.1186/ar4186

[41]

Vanyushin BF. DNA methylation and epigenetics. Russian Journal of Genetics. 2006;42(9):985–997. EDN: LJWBIN doi: 10.1134/S1022795406090055

[42]

Ванюшин Б.Ф. Метилирование ДНК и эпигенетика // Генетика. 2006. Т. 42, № 9. С. 1186–1199. EDN: IASUGR

[43]

Kumar S, Chinnusamy V, Mohapatra T. Epigenetics of modified DNA bases: 5-methylcytosine and beyond. Front Genet. 2018;(9):640. doi: 10.3389/fgene.2018.00640

[44]

Kumar S., Chinnusamy V., Mohapatra T. Epigenetics of modified DNA bases: 5-methylcytosine and beyond // Front Genet. 2018. Vol. 9. P. 640. doi: 10.3389/fgene.2018.00640

[45]

Mattei AL, Bailly N, Meissner A. DNA methylation: A historical perspective. Trends Genet. 2022;38(7):676–707. doi: 10.1016/j.tig.2022.03.010

[46]

Mattei A.L., Bailly N., Meissner A. DNA methylation: A historical perspective // Trends Genet. 2022. Vol. 38, N 7. P. 676–707. doi: 10.1016/j.tig.2022.03.010

[47]

Fleming AM, Burrows CJ. DNA modifications walk a fine line between epigenetics and mutagenesis. Nat Rev Mol Cell Biol. 2023;(24):449–450. doi: 10.1038/s41580-023-00590-2

[48]

Fleming A.M., Burrows C.J. DNA modifications walk a fine line between epigenetics and mutagenesis // Nat Rev Mol Cell Biol. 2023. Vol. 24. P. 449–450. doi: 10.1038/s41580-023-00590-2

[49]

Zhu D, Zeng S, Su C, et al. The interaction between DNA methylation and tumor immune microenvironment: from the laboratory to clinical applications. Clin Epigenet. 2024;(16):e24. doi: 10.1186/s13148-024-01633-x

[50]

Zhu D., Zeng S., Su C., et al. The interaction between DNA methylation and tumor immune microenvironment: from the laboratory to clinical applications // Clin Epigenet. 2024. Vol. 16, N 1. P. e24. doi: 10.1186/s13148-024-01633-x

[51]

Ilango S, Paital B, Jayachandran P, et al. Epigenetic alterations in cancer. Front Biosci (Landmark Ed). 2020;25(6):1058–1109. doi: 10.2741/4847

[52]

Ilango S., Paital B., Jayachandran P., et al. Epigenetic alterations in cancer // Front Biosci (Landmark Ed). 2020. Vol. 25, N 6. P. 1058–1109. doi: 10.2741/4847

[53]

Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA. 1992;89(5):1827–1831. doi: 10.1073/pnas.89.5.1827

[54]

Frommer M., McDonald L.E., Millar D.S., et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands // Proc Natl Acad Sci USA. 1992. Vol. 89, N 5. P. 1827–1831. doi: 10.1073/pnas.89.5.1827

[55]

Zaina S, Heyn H, Carmona FJ, et al. DNA methylation map of human atherosclerosis. Circ Cardiovasc Genet. 2014;7(5):692–700. doi: 10.1161/CIRCGENETICS.113.000441

[56]

Zaina S., Heyn H., Carmona F.J., et al. DNA methylation map of human atherosclerosis // Circ Cardiovasc Genet. 2014. Vol. 7, N 5. P. 692–700. doi: 10.1161/CIRCGENETICS.113.000441

[57]

Soler-Botija C, Gálvez-Montón C, Bayés-Genís A. Epigenetic biomarkers in cardiovascular diseases. Front Genet. 2019;10:950. doi: 10.3389/fgene.2019.00950

[58]

Soler-Botija C., Gálvez-Montón C., Bayés-Genís A. Epigenetic biomarkers in cardiovascular diseases // Front Genet. 2019. Vol. 10. P. 950. doi: 10.3389/fgene.2019.00950

[59]

Wang X, Teng X, Luo Ch, Kong L. Mechanisms and advances of epigenetic regulation in cardiovascular disease. Front Biosci (Landmark Ed). 2024;29(6):205. doi: 10.31083/j.fbl2906205

[60]

Wang X., Teng X., Luo Ch., Kong L. Mechanisms and advances of epigenetic regulation in cardiovascular disease // Front Biosci (Landmark Ed). 2024. Vol. 29, N 6. P. 205. doi: 10.31083/j.fbl2906205

[61]

Shi Y, Zhang H, Huang S, et al. Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2022;7(1):e200. doi: 10.1038/s41392-022-01055-2

[62]

Shi Y., Zhang H., Huang S., et al. Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials // Signal Transduct Target Ther. 2022. Vol. 7, N 1. P. 200. doi: 10.1038/s41392-022-01055-2

[63]

Westerman K, Sebastiani P, Jacques P, et al. DNA methylation modules associate with incident cardiovascular disease and cumulative risk factor exposure. Clin Epigenet. 2019;11(1):142. doi: 10.1186/s13148-019-0705-2

[64]

Westerman K., Sebastiani P., Jacques P., et al. DNA methylation modules associate with incident cardiovascular disease and cumulative risk factor exposure // Clin Epigenet. 2019. Vol. 11, N 1. P. 142. doi: 10.1186/s13148-019-0705-2

[65]

Madsen A, Höppner G, Krause J, et al. An important role for DNMT3A-mediated DNA methylation in cardiomyocyte metabolism and contractility. Circulation. 2020;142(16):1562–1578. doi: 10.1161/CIRCULATIONAHA.119.044444

[66]

Madsen A., Höppner G., Krause J., et al. An Important Role for DNMT3A-Mediated DNA methylation in cardiomyocyte metabolism and contractility // Circulation. 2020. Vol. 142, N 16. P. 1562–1578. doi: 10.1161/CIRCULATIONAHA.119.044444

[67]

Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–45. doi: 10.1038/47412

[68]

Strahl B.D., Allis C.D. The language of covalent histone modifications // Nature. 2000. Vol. 403, N 6765. P. 41–45. doi: 10.1038/47412

[69]

Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med. 2017;49(4):e324. doi: 10.1038/emm.2017.11

[70]

Hyun K., Jeon J., Park K., Kim J. Writing, erasing and reading histone lysine methylations // Exp Mol Med. 2017. Vol. 49, N 4. P. 324. doi: 10.1038/emm.2017.11

[71]

Shahid Z, Simpson B, Miao KH, Singh G. Genetics, Histone Code. Treasure Island (FL):StatPearls Publishing; 2024.

[72]

Shahid Z., Simpson B., Miao K.H., Singh G. Genetics, Histone Code. Treasure Island (FL): StatPearls Publishing; 2024.

[73]

Fan S, Zhang MQ, Zhang X. Histone methylation marks play important roles in predicting the methylation status of CpG islands. Biochem Biophys Res Commun. 2008;374(3):559–564. doi: 10.1016/j.bbrc.2008.07.077

[74]

Fan S., Zhang M.Q., Zhang X. Histone methylation marks play important roles in predicting the methylation status of CpG islands // Biochem Biophys Res Commun. 2008. Vol. 374, N 3. P. 559–564. doi: 10.1016/j.bbrc.2008.07.077

[75]

Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295–304. doi: 10.1038/nrg2540

[76]

Cedar H., Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms // Nat Rev Genet. 2009. Vol. 10, N 5. P. 295–304. doi: 10.1038/nrg2540

[77]

Kucher AN, Nazarenko MS. epigenetics of cardiomyopathy: histone modifications and DNA methylation. Russian Journal of Genetics. 2023;59(3):226–241. EDN: IPXZDH doi: 10.1134/S1022795423030080

[78]

Кучер А.Н., Назаренко М.С. Эпигенетика кардиомиопатий: модификации гистонов и метилирование ДНК // Генетика. 2023. Т. 59, № 3. C. 266–282. EDN: IPXZDH doi: 10.31857/S0016675823030086

[79]

Liu R, Wu J, Guo H, et al. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (2000). 2023;4(3):e292. doi: 10.1002/mco2.292

[80]

Liu R., Wu J., Guo H., et al. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets // MedComm (2020). 2023. Vol. 4, N 3. P. 292. doi: 10.1002/mco2.292

[81]

Song JS, Kim YS, Kim DK, et al. Global histone modification pattern associated with recurrence and disease-free survival in non-small cell lung cancer patients. Pathol Int. 2012;62(3):182–190. doi: 10.1111/j.1440-1827.2011.02776.x

[82]

Song J.S., Kim Y.S., Kim D.K., et al. Global histone modification pattern associated with recurrence and disease-free survival in non-small cell lung cancer patients // Pathol Int. 2012. Vol. 62, N 3. P. 182–190. doi: 10.1111/j.1440-1827.2011.02776.x

[83]

Berger L, Kolben T, Meister S, et al. Expression of H3K4me3 and H3K9ac in breast cancer. J Cancer Res Clin Oncol. 2020;146(8):2017–2027. doi: 10.1007/s00432-020-03265-z

[84]

Berger L., Kolben T., Meister S., et al. Expression of H3K4me3 and H3K9ac in breast cancer // J Cancer Res Clin Oncol. 2020. Vol. 146, N 8. P. 2017–2027. doi: 10.1007/s00432-020-03265-z

[85]

Day CA, Hinchcliffe EH, Robinson JP. H3K27me3 in diffuse midline glioma and epithelial ovarian cancer: opposing epigenetic changes leading to the same poor outcomes. Cells. 2022;11(21):3376. doi: 10.3390/cells11213376

[86]

Day C.A., Hinchcliffe E.H., Robinson J.P. H3K27me3 in diffuse midline glioma and epithelial ovarian cancer: opposing epigenetic changes leading to the same poor outcomes // Cells. 2022. Vol. 11, N 21. P. 3376. doi: 10.3390/cells11213376

[87]

Monaghan L, Massett ME, Bunschoten RP, et al. The emerging role of H3K9me3 as a potential therapeutic target in acute myeloid leukemia. Front Oncol. 2019;2(9):705. doi: 10.3389/fonc.2019.00705

[88]

Monaghan L., Massett M.E., Bunschoten R.P., et al. The emerging role of H3K9me3 as a potential therapeutic target in acute myeloid leukemia // Front Oncol. 2019. Vol. 2, N 9. P. 705. doi: 10.3389/fonc.2019.00705

[89]

Ryabchikov DA, Vorotnikov IK, Talipov OA, et al. MicroRNA and their role in pathogenesis and diagnosis of breast cancer. Medical alphabet. 2020;(8):12–15. EDN: UXTTUF doi: 10.33667/2078-5631-2020-8-12-15

[90]

Рябчиков Д.А., Воротников И.К., Талипов О.А., и др. МикроРНК и их роль в патогенезе и диагностике рака молочной железы // Медицинский алфавит. 2020. № 8. С. 12–15. EDN: UXTTUF doi: 10.33667/2078-5631-2020-8-12-15

[91]

Yao Q, Chen Y, Zhou X. The roles of microRNAs in epigenetic regulation. Curr Opin Chem Biol. 2019;51:11–17. doi: 10.1016/j.cbpa.2019.01.024

[92]

Yao Q., Chen Y., Zhou X. The roles of microRNAs in epigenetic regulation // Curr Opin Chem Biol. 2019. Vol. 51. P. 11–17. doi: 10.1016/j.cbpa.2019.01.024

[93]

Kumar S, Gonzalez EA, Rameshwar P, Etchegaray JP. Non-coding RNAs as mediators of epigenetic changes in malignancies. Cancers (Basel). 2020;12(12):3657. doi: 10.3390/cancers12123657

[94]

Kumar S., Gonzalez E.A., Rameshwar P., Etchegaray J.P. Non-coding RNAs as mediators of epigenetic changes in malignancies // Cancers (Basel). 2020. Vol. 12, N 12. P. 3657. doi: 10.3390/cancers12123657

[95]

Ratti M, Lampis A, Ghidini M, et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: first steps from bench to bedside. Target Oncol. 2020;15(3):261–278. doi: 10.1007/s11523-020-00717-x

[96]

Ratti M., Lampis A., Ghidini M., et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: first steps from bench to bedside // Target Oncol. 2020. Vol. 15, N 3. P. 261–278. doi: 10.1007/s11523-020-00717-x

[97]

Nalbant E, Akkaya-Ulum YZ. Exploring regulatory mechanisms on miRNAs and their implications in inflammation-related diseases. Clin Exp Med. 2024;24(1):e142. doi: 10.1007/s10238-024-01334-y

[98]

Nalbant E., Akkaya-Ulum Y.Z. Exploring regulatory mechanisms on miRNAs and their implications in inflammation-related diseases // Clin Exp Med. 2024. Vol. 24, N 1. P. 142. doi: 10.1007/s10238-024-01334-y

[99]

Poddar S, Kesharwani D, Datta M. Interplay between the miRNome and the epigenetic machinery: Implications in health and disease. J Cell Physiol. 2017;232(11):e2938–2945. doi: 10.1002/jcp.25819

[100]

Poddar S., Kesharwani D., Datta M. Interplay between the miRNome and the epigenetic machinery: Implications in health and disease // J Cell Physiol. 2017. Vol. 232, N 11. P. 2938–2945. doi: 10.1002/jcp.25819

[101]

Farsetti A, Illi B, Gaetano C. How epigenetics impacts on human diseases. Eur J Int Med. 2023;(114):15–22. doi: 10.1016/j.ejim.2023.05.036

[102]

Farsetti A., Illi B., Gaetano C. How epigenetics impacts on hum an diseases // Eur J Int Med. 2023. Vol. 114. P. 15–22. doi: 10.1016/j.ejim.2023.05.036

[103]

Abdul QA, Yu BP, Chung HY, et al. Epigenetic modifications of gene expression by lifestyle and environment. Arch Pharm Res. 2017;40(11):1219–1237. doi: 10.1007/s12272-017-0973-3

[104]

Abdul Q.A., Yu B.P., Chung H.Y., et al. Epigenetic modifications of gene expression by lifestyle and environment // Arch Pharm Res. 2017. Vol. 40, N 11. P. 1219–1237. doi: 10.1007/s12272-017-0973-3

[105]

Wu H, Eckhardt CM, Baccarelli AA. Molecular mechanisms of environmental exposures and human disease. Nat Rev Genet. 2023;24(5):332–344. doi: 10.1038/s41576-022-00569-3

[106]

Wu H., Eckhardt C.M., Baccarelli A.A. Molecular mechanisms of environmental exposures and human disease // Nat Rev Genet. 2023. Vol. 24, N 5. P. 332–344. doi: 10.1038/s41576-022-00569-3

[107]

Skinner MK. Epigenetic biomarkers for disease susceptibility and preventative medicine. Cell Metab. 2024;36(2):263–277. doi: 10.1016/j.cmet.2023.11.015

[108]

Skinner M.K. Epigenetic biomarkers for disease susceptibility and preventative medicine // Cell Metab. 2024. Vol. 36, N 2. P. 263–277. doi: 10.1016/j.cmet.2023.11.015

[109]

Becker N, Prasad-Shreckengast S, Byosiere SE. Methodological challenges in the assessment of dogs’ (Canis lupus familiaris) susceptibility of the Ebbinghaus-Titchener illusion using the spontaneous choice task. Animal Behav Cogn. 2021;8(2):138–151. doi: 10.26451/abc.08.02.04.2021

[110]

Becker N., Prasad-Shreckengast S., Byosiere S.E. Methodological challenges in the assessment of dogs’ (Canis lupus familiaris) susceptibility of the Ebbinghaus-Titchener illusion using the spontaneous choice task // Animal Behav Cogn. 2021. Vol. 8, N 2. P. 138–151. doi: 10.26451/abc.08.02.04.2021

[111]

Liu S, Lam MA, Sial A, et al. Fluid outflow in the rat spinal cord: the role of perivascular and paravascular pathways. Fluids Barriers CNS. 2018;(15):13. doi: 10.1186/s12987-018-0098-1

[112]

Liu S., Lam M.A., Sial A., et al. Fluid outflow in the rat spinal cord: the role of perivascular and paravascular pathways // Fluids Barriers CNS. 2018. Vol. 15. P. 13. doi: 10.1186/s12987-018-0098-1

[113]

Gadd DA, Hillary RF, McCartney DL, et al. Epigenetic scores for the circulating proteome as tools for disease prediction. Elife. 2022;13(11):e71802. doi: 10.7554/eLife.71802

[114]

Gadd D.A., Hillary R.F., McCartney D.L., et al. Epigenetic scores for the circulating proteome as tools for disease prediction // Elife. 2022. Vol. 13, N 11. P. e71802. doi: 10.7554/eLife.71802

[115]

Virolainen SJ, VonHandorf A, Viel KCMF, et al. Gene-environment interactions and their impact on human health. Gene Immun. 2023;24(1):1–11. doi: 10.1038/s41435-022-00192-6

[116]

Virolainen S.J., VonHandorf A., Viel K.C.M.F., et al. Gene-environment interactions and their impact on human health // Gene Immun. 2023. Vol. 24, N 1. P. 1–11. doi: 10.1038/s41435-022-00192-6

[117]

Maksimenko LV. Epigenetics as an evidence base of the impact of lifestyle on health and disease. Russian Journal of Preventive Medicine. 2019;22(2):115–120. (In Russ.) EDN: QHKMXX doi: 10.17116/profmed201922021115

[118]

Максименко Л.В. Эпигенетика как доказательная база влияния образа жизни на здоровье и болезни // Профилактическая медицина. 2019. Т. 22, № 2. С. 115–120. EDN: QHKMXX doi: 10.17116/profmed201922021115

[119]

García-Giménez JL, Seco-Cervera M, Tollefsbol TO, et al. Epigenetic biomarkers: Current strategies and future challenges for their use in the clinical laboratory. Crit Rev Clin Lab Sci. 2017;54(7–8):529–550. doi: 10.1080/10408363.2017.1410520

[120]

García-Giménez J.L., Seco-Cervera M., Tollefsbol T.O., et al. Epigenetic biomarkers: Current strategies and future challenges for their use in the clinical laboratory // Crit Rev Clin Lab Sci. 2017. Vol. 54, N 7–8. P. 529–550. doi: 10.1080/10408363.2017.1410520

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/