Clinical and laboratory characteristics of patients with severe COVID-19 undergoing gene engineering therapy

Aleksandra V. Rogozhkina , Margarita N. Pogromskaya , Elena S. Romanova , Galina Yu. Startseva , Olga M. Filipovich , Margarita V. Klur , Vsevolod M. Antonov

Russian Family Doctor ›› 2024, Vol. 28 ›› Issue (4) : 62 -71.

PDF (688KB)
Russian Family Doctor ›› 2024, Vol. 28 ›› Issue (4) : 62 -71. DOI: 10.17816/RFD635932
Original study article
research-article

Clinical and laboratory characteristics of patients with severe COVID-19 undergoing gene engineering therapy

Author information +
History +
PDF (688KB)

Abstract

Background: One of the primary factors contributing to an increased risk of fatal outcomes in severe COVID-19 cases is the development of a cytokine storm, a hyperimmune response characterized by excessive cytokine release. Despite using biologic therapies, mortality rates in severe COVID-19 cases remain significantly high.

Aim: To analyze and evaluate the clinical and laboratory parameters of patients with severe COVID-19 who received biologic therapy.

Materials and methods: A cluster sampling method was employed, with clusters selected based on the severity of the primary disease and biologic therapy. The study included 65 patients, divided into two groups based on disease outcomes: Group 1 comprised 34 patients with favorable outcomes, while Group 2 included 31 patients with fatal outcomes.

Results: Significant differences were observed between the groups in terms of age (p = 0.01). Patients in Group 2 (with fatal outcomes) had a higher burden of co-morbidities, as measured by the Charlson Comorbidity Index (p = 0.00009) and the Cumulative Illness Rating Scale for Geriatrics (CIRS-G; p = 0.000003). Additionally, the groups differed significantly in the number of days from disease onset to the initiation of biologic therapy (p = 0.02). In Group 2, delayed initiation of biologic therapy was associated with persistently high concentrations of acute-phase proteins.

Conclusions: Key factors influencing the efficacy of biologic therapy for severe COVID-19 with cytokine storm include patient age, the presence and severity of co-morbidities, and the timing of hospitalization and initiation of biologic therapy.

Keywords

COVID-19 / severe course / biological therapy / genetically engineered therapy / favorable outcome / comorbidity

Cite this article

Download citation ▾
Aleksandra V. Rogozhkina, Margarita N. Pogromskaya, Elena S. Romanova, Galina Yu. Startseva, Olga M. Filipovich, Margarita V. Klur, Vsevolod M. Antonov. Clinical and laboratory characteristics of patients with severe COVID-19 undergoing gene engineering therapy. Russian Family Doctor, 2024, 28(4): 62-71 DOI:10.17816/RFD635932

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239–1242. doi: 10.1001/jama.2020.2648

[2]

Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention // JAMA. 2020. Vol. 323, N 13. P. 1239–1242. doi : 10.1001/jama.2020.2648

[3]

Shherbak SG, Kamilova TA, Golota AS, Vologzhanin DA. Risk factors for severe course and lethal outcome of COVID-19. Physical and Rehabilitation Medicine, Medical Rehabilitation. 2022;4(1):14–36. EDN: IWIVWC doi: 10.36425/rehab104997

[4]

Щербак С.Г., Камилова Т.А., Голота А.С., Вологжанин Д.А. Факторы риска тяжелого течения и летального исхода COVID-19 // Физическая и реабилитационная медицина, медицинская реабилитация. 2022. Т. 4, № 1. С. 14–36. EDN: IWIVWC doi: 10.36425/rehab104997

[5]

Potapnev MP. Cytokine storm: causes and consequences. Immunologiya. 2021;42(2):175–188. EDN: KTUDQQ doi: 10.33029/0206-4952-2021-42-2-175-188

[6]

Потапнев М.П. Цитокиновый шторм: причины и последствия // Иммунология. 2021. Т. 42, № 2. С. 175–188. EDN: KTUDQQ doi: 10.33029/0206-4952-2021-42-2-175-188

[7]

Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5

[8]

Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // Lancet. 2020. Vol. 395. P. 497–506. doi: 10.1016/S0140-6736(20)30183-5

[9]

Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46:1294–1297. doi: 10.1007/s00134-020-05991-x

[10]

Ruan Q., Yang K., Wang W., et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China // Intensive Care Med. 2020. Vol. 46. P. 1294–1297. doi: 10.1007/s00134-020-05991-x

[11]

Morris G, Bortolasci C, Puri BK, et al. Preventing the development of severe COVID-19 by modifying immunothrombosis. Life Sci. 2021;264:118617. doi: 10.1016/j.lfs.2020.118617

[12]

Morris G., Bortolasci C., Puri B.K., et al. Preventing the development of severe COVID-19 by modifying immunothrombosis // Life Sci. 2021. Vol. 264. P. 118617. doi: 10.1016/j.lfs.2020.118617

[13]

Jayarangaiah A, Kariyanna PT, Chen X, et al. COVID-19-associated coagulopathy: an exacerbated immunothrombosis response. Clin Appl Thromb Hemost. 2020;26:1–11. doi: 10.1177/1076029620943293

[14]

Jayarangaiah A., Kariyanna P.T., Chen X., et al. COVID-19-associated coagulopathy: an exacerbated immunothrombosis response // Clin Appl Thromb Hemost. 2020. Vol. 26. P. 1–11. doi: 10.1177/1076029620943293

[15]

Chernyh ER, Leplina OJu, Tihonova MA, et al. Cytokine balance in the pathogenesis of systemic inflammatory response: a new target for immunotherapeutic interventions in the treatment of sepsis. Medical Immunology. 2001;3(3):415–429. (In Russ.). EDN: JUARZX

[16]

Черных Е.Р., Леплина О.Ю., Тихонова М.А., и др. Цитокиновый баланс в патогенезе системного воспалительного ответа: новая мишень иммунотерапевтических воздействий при лечении сепсиса // Медицинская иммунология. 2001. Т. 3, № 3. С. 415–429. EDN: JUARZX

[17]

Shi Y, Wang Y, Shao C, et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020;27(5):1451−1454. doi: 10.1038/s41418-020-0530-3

[18]

Shi Y., Wang Y., Shao C., et al. COVID-19 infection: the perspectives on immune responses // Cell Death Differ. 2020. Vol. 27, N 5. P. 1451−1454. doi: 10.1038/s41418-020-0530-3

[19]

Nguyen A, David JK, Maden SK, et al. Human leukocyte antigen susceptibility map for SARS-CoV-2. J Virol. 2020;94(13):1−12. doi: 10.1128/JVI.00510-20

[20]

Nguyen A., David J.K., Maden S.K., et al. Human leukocyte antigen susceptibility map for SARS-CoV-2. // J Virol. 2020. Vol. 94, N 13. P. 1–12. doi: 10.1128/JVI.00510-20

[21]

Williamson E, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430–436. doi: 10.1038/s41586-020-2521-4

[22]

Williamson E., Walker A.J., Bhaskaran K., et al. Factors associated with COVID-19-related death using OpenSAFELY // Nature. 2020. Vol. 584, N 7821. P. 430–436. doi: 10.1038/s41586-020-2521-4

[23]

Zhang J, Wang X, Jia X, et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin Microbiol Infect. 2020;26(6):767−772. doi: 10.1016/j.cmi.2020.04.012

[24]

Zhang J., Wang X., Jia X., et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China // Clin Microbiol Infect. 2020. Vol. 26. N 6. P. 767–772. doi: 10.1016/j.cmi.2020.04.012

[25]

Vorob’eva NA, Vorob’eva AI. Predictive value of D-dimer in COVID -19. Health care Standardization Problems. 2021;5(6):36−42. EDN: AYAAXX doi: 10.26347/1607-2502202105-06036-042

[26]

Воробьева Н.А., Воробьева А.И. Прогностическая значимость Д-димера при COVID-19 // Проблемы стандартизации в здравоохранении. 2021. Т. 5, № 6. С. 36–42. EDN: AYAAXX doi: 10.26347/1607-2502202105-06036-042

[27]

Ponti G, Maccaferri M, Ruini C, et al. Biomarkers associated with COVID-19 disease progression. Crit Rev Clin Lab Sci. 2020;57(6):389−399. doi: 10.1080/10408363.2020.1770685

[28]

Ponti G., Maccaferri M., Ruini C., et al. Biomarkers associated with COVID-19 disease progression // Crit Rev Clin Lab Sci. 2020. Vol. 57, N 6. P. 389–399. doi: 10.1080/10408363.2020.1770685

[29]

Ishikawa T. Clinical preparedness for cytokine storm induced by the highly pathogenic H5N1 influenza virus. J Pharmacogenom Pharmacoproteomics. 2012;3(6):1000e131. doi: 10.4172/2153-0645.1000e131

[30]

Ishikawa T. Clinical preparedness for cytokine storm induced by the highly pathogenic H5N1 influenza virus // J Pharmacogenom Pharmacoproteomics. 2012. Vol. 3, N 6. P. 1000e131. doi: 10.4172/2153-0645.1000e131

[31]

Polushin JuS, Shlyk IV, Gavrilova EG, et al. The role of ferritin in assessing COVID-19 severity. Bulletin of anesthesiology and resuscitation. 2021;18(4):20−28. EDN: VGUGSZ doi: 10.21292/2078-5658-2021-18-4-20-28

[32]

Полушин Ю.С., Шлык И.В., Гаврилова Е.Г., и др. Роль ферритина в оценке тяжести COVID-19 // Вестник анестезиологии и реаниматологии. 2021. Т. 18, № 4. С. 20−28. EDN: VGUGSZ doi: 10.21292/2078-5658-2021-18-4-20-28

[33]

Kuznecov IA, Potievskaja VI, Kachanov IV, Kuraleva OO. Ferritin’s role in biological circles of the person. Modern problems of science and education. 2017;(5):206. EDN: ZQNIGV

[34]

Кузнецов И.А., Потиевская В.И., Качанов И.В., Куралева О.О. Роль ферритина в биологических средах человека // Современные проблемы науки и образования. 2017. № 5. С. 206. EDN: ZQNIGV

[35]

Antoshkin ON, Vorotnikova TV. Analysis of complications from coronavirus infection COVID-19 according to pathoanatomical studies. Journal of Volgograd state medical university. 2021;78(2):156−159. EDN: FTGALT doi: 10.19163/1994-9480-2021-2(78)-156-159

[36]

Антошкин О.Н., Воротникова Т.В. Анализ осложнений от коронавирусной инфекции COVID-19 по данным патологоанатомических исследований // Вестник ВолгГМУ. 2021. Т. 78, № 2. С. 156−159. EDN: FTGALT doi: 10.19163/1994-9480-2021-2(78)-156-159

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (688KB)

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/