Measles and rubella are two controlled airborne infections: etiopathogenesis, epidemiology, clinical picture, diagnosis, treatment and prevention. Part 1. Measles
Vladimir A. Neverov , Galina I. Kirpichnikova , Vsevolod M. Antonov , Galina Yu. Startseva , Margarita V. Klur
Russian Family Doctor ›› 2024, Vol. 28 ›› Issue (1) : 5 -14.
Measles and rubella are two controlled airborne infections: etiopathogenesis, epidemiology, clinical picture, diagnosis, treatment and prevention. Part 1. Measles
The lecture is devoted to two infections controlled by specific means of prevention — measles and rubella, which still pose a danger both to the sphere of child and maternal health, and to healthcare in general.
The first part of the lecture is devoted to measles, one of the most contagious diseases, outbreaks of which can be successfully prevented through vaccination or, conversely, serve as an indicator of gaps in immunization programs and primary health care systems. The lecture covers modern aspects of etiopathogenesis, epidemiology, clinical picture, diagnosis, treatment and prevention of measles. In the context of an increase in the incidence of this infection in our country and a number of foreign countries in 2023, the information presented in the lecture may be useful for practitioners and, first of all, family doctors.
measles / rubella / virus / immunity / diagnosis / treatment / specific prevention
| [1] |
WHO EpiBrief: a report on the epidemiology of selected vaccine-preventable diseases in the European Region: N. 2/2023 [Internet]. Available from: https://www.who.int/europe/publications/i/item/WHO-EURO-2023-8231-48003-71091. Accessed: 24 Jan 2024. |
| [2] |
WHO EpiBrief: a report on the epidemiology of selected vaccine-preventable diseases in the European Region: N. 2/2023 [Интернет]. Режим доступа: https://www.who.int/europe/publications/i/item/WHO-EURO-2023-8231-48003-71091. Дата обращения: 24.01.2024. |
| [3] |
WHO EpiData N. 7/2023 [Internet]. Available from: https://www.who.int/europe/publications/m/item/epidata-7-2023. Accessed: 24 Jan 2024. |
| [4] |
WHO EpiData N. 7/2023 [Интернет]. Режим доступа: https://www.who.int/europe/publications/m/item/epidata-7-2023. Дата обращения: 24.01.2024. |
| [5] |
Operational considerations for planning and implementing catch-up vaccination in the WHO European Region [Internet]. Available from: https://www.who.int/europe/publications/i/item/WHO-EURO-2022-4751-44514-63005. Accessed: 24 Jan 2024. |
| [6] |
Operational considerations for planning and implementing catch-up vaccination in the WHO European Region [Интернет]. Режим доступа: https://www.who.int/europe/publications/i/item/WHO-EURO-2022-4751-44514-63005. Дата обращения: 24.01.2024. |
| [7] |
Measles and rubella strategic framework 2021–2030. WHO. 2020 [Internet]. Available from: https://www.who.int/publications/i/item/measles-and-rubella-strategic-framework-2021-2030. Accessed: 24 Jan 2024. |
| [8] |
Measles and rubella strategic framework 2021–2030. WHO. 2020. [Интернет]. Режим доступа: https://www.who.int/publications/i/item/measles-and-rubella-strategic-framework-2021-2030. Дата обращения: 24.01.2024. |
| [9] |
World Health Organization: Global distribution of measles and rubella genotypes — update. Wkly Epidemiol Rec. 2006;81(51/52):474–479. |
| [10] |
World Health Organization: Global distribution of measles and rubella genotypes — update // Wkly Epidemiol Rec. 2006. Vol. 81, N. 51/52. P. 474–479. |
| [11] |
Moss WJ. Measles. Lancet. 2017;390(10111):2490–2502. doi: 10.1016/S0140-6736(17)31463-0 |
| [12] |
Moss W.J. Measles // Lancet. 2017. Vol. 390, N. 10111. P. 2490–2502. doi: 10.1016/S0140-6736(17)31463-0 |
| [13] |
Patel MK, Goodson JL, Alexander JP Jr, et al: Progress toward regional measles elimination — worldwide, 2000–2019. MMWR Morb Mortal Wkly Rep. 2020;69(45):1700–1705. doi: 10.15585/mmwr.mm6945a6 |
| [14] |
Patel M.K., Goodson J.L., Alexander J.P.Jr., et al: Progress toward regional measles elimination — worldwide, 2000–2019 // MMWR Morb Mortal Wkly Rep. 2020. Vol. 69, N. 45. P. 1700–1705. doi: 10.15585/mmwr.mm6945a6 |
| [15] |
De Francesco MA. Measles Resurgence in Europe: an open breakthrough in the field of vaccine-preventable diseases. Pathogens. 2023;12(10):1192. doi: 10.3390/pathogens12101192 |
| [16] |
De Francesco M.A. Measles Resurgence in Europe: an open breakthrough in the field of vaccine-preventable diseases // Pathogens. 2023. Vol. 12, N. 10. P. 1192. doi: 10.3390/pathogens12101192 |
| [17] |
Fraser B. Measles outbreak in the Americas. Lancet. 2018;392(10145):373. doi: 10.1016/S0140-6736(18)31727-6 |
| [18] |
Fraser B. Measles outbreak in the Americas // Lancet. 2018. Vol. 392, N. 10145. P. 373. doi: 10.1016/S0140-6736(18)31727-6 |
| [19] |
WHO and CDC Joint News Release (5 December 2019) [Internet]. Available from: https://www.who.int/news/item/05-12-2019-more-than-140-000-die-from-measles-as-cases-surge-worldwide. Accessed: 24 Jan 2024. |
| [20] |
WHO and CDC Joint News Release (5 December 2019) [Internet]. Режим доступа: https://www.who.int/news/item/05-12-2019-more-than-140-000-die-from-measles-as-cases-surge-worldwide. Дата обращения: 24.01.2024. |
| [21] |
Buchanan R, Bonthius DJ. Measles virus and associated central nervous system sequelae. Semin Pediatr Neurol. 2012;19(3):107–114. doi: 10.1016/j.spen.2012.02.003 |
| [22] |
Buchanan R., Bonthius D.J. Measles virus and associated central nervous system sequelae // Semin Pediatr Neurol. 2012. Vol. 19, N. 3. P. 107–114. doi: 10.1016/j.spen.2012.02.003 |
| [23] |
Noyce RS, Bondre DG, Ha MN, et al. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog. 2011;7(8):e1002240. doi: 10.1371/journal.ppat.1002240 |
| [24] |
Noyce R.S., Bondre D.G., Ha M.N., et al. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus // PLoS Pathog. 2011. Vol. 7, N. 8. P. e1002240. doi: 10.1371/journal.ppat.1002240 |
| [25] |
Jiang Y, Qin Y, Chen M. Host–Pathogen interactions in measles virus replication and anti-viral immunity. Viruses. 2016;8(11):308. doi: 10.3390/v8110308 |
| [26] |
Jiang Y., Qin Y., Chen M. Host–Pathogen interactions in measles virus replication and anti-viral immunity // Viruses. 2016. Vol. 8, N. 11. P. 308. doi: 10.3390/v8110308 |
| [27] |
Rima BK, Duprex WP. New concepts in measles virus replication: getting in and out in vivo and modulating the host cell environment. Virus Res. 2011;162:47–62. doi: 10.1016/j.virusres.2011.09.021 |
| [28] |
Rima B.K., Duprex W.P. New concepts in measles virus replication: getting in and out in vivo and modulating the host cell environment // Virus Res. 2011. Vol. 162. P. 47–62. doi: 10.1016/j.virusres.2011.09.021 |
| [29] |
Sakamoto K, Konami M, Satoh Y, et al. Suppression of viral RNA polymerase activity is necessary for persistent infection during the transformation of measles virus into SSPE virus. PLoS Pathog. 2023;19(7):e1011528. doi: 10.1371/journal.ppat.1011528 |
| [30] |
Sakamoto K., Konami M., Satoh Y., et al. Suppression of viral RNA polymerase activity is necessary for persistent infection during the transformation of measles virus into SSPE virus // PLoS Pathog. 2023. Vol. 19, N. 7. P. e1011528. doi: 10.1371/journal.ppat.1011528 |
| [31] |
Clinical recommendations (treatment protocol) for providing medical care to children with measles. 2015 [Internet]. Available from: http://niidi.ru/dotAsset/eed9b132-1dc0-4adc-8833-092e5e36fa66.pdf. Accessed: 06.07.2023. (In Russ.) |
| [32] |
Клинические рекомендации (протокол лечения) оказания медицинской помощи детям больным корью. 2015 [Интернет]. Режим доступа: http://niidi.ru/dotAsset/eed9b132-1dc0-4adc-8833-092e5e36fa66.pdf. Дата обращения: 06.07.2023. |
| [33] |
Sudfeld CR, Navar AM, Halsey NA. Effectiveness of measles vaccination and vitamin A treatment. Int J Epidemiol. 2010;39 Suppl 1(Suppl 1):i48–55. doi: 10.1093/ije/dyq021 |
| [34] |
Sudfeld C.R., Navar A.M., Halsey N.A. Effectiveness of measles vaccination and vitamin A treatment // Int J Epidemiol. 2010. Vol. 39 Suppl 1, N. Suppl 1. P. i48–55. doi: 10.1093/ije/dyq021 |
Eco-Vector
/
| 〈 |
|
〉 |