Modelling of silicone oil emulsification in vitro (review)

Aleksandr D. Chuprov , Aleksandr S. Firsov , Olga V. Marshinskaia , Tatiana V. Kazakova

Ophthalmology Reports ›› 2025, Vol. 18 ›› Issue (1) : 85 -93.

PDF (1101KB)
Ophthalmology Reports ›› 2025, Vol. 18 ›› Issue (1) : 85 -93. DOI: 10.17816/OV633493
Reviews
review-article

Modelling of silicone oil emulsification in vitro (review)

Author information +
History +
PDF (1101KB)

Abstract

Silicone tamponade is one of the prevailing methods used in the surgical treatment of retinal detachments. However, one of the significant disadvantages of using silicones is their emulsification and the risk of developing associated ophthalmic conditions. In this regard, the question of ways to prevent silicone emulsification remains relevant. Emulsification does not occur in all cases of tamponade, and this indicates that there are factors that could interfere with the development of this process. It is known that emulsification of silicone oil has a multifactorial etiology, and in vitro experimental models are being developed to study these mechanisms in more detail. It is the variety of factors that determine the tendency to emulsify ophthalmic silicone that formed the basis for the creation of these models. Such factors include physicochemical and mechanical effects, saccadic eye movements, adhesion of silicone oil to eye tissues, absorption of biological substances from intraocular fluids and tissues. The development of a variety of in vitro models allows, on the one hand, to obtain new fundamental knowledge, while, on the other hand, it allows us to solve practical issues related to the prevention of silicone emulsification and may provide insight into future strategies for improved intraocular tamponade.

Keywords

silicone oil / tamponade of vitreal cavity / emulsification factors / in vitro modelling

Cite this article

Download citation ▾
Aleksandr D. Chuprov, Aleksandr S. Firsov, Olga V. Marshinskaia, Tatiana V. Kazakova. Modelling of silicone oil emulsification in vitro (review). Ophthalmology Reports, 2025, 18(1): 85-93 DOI:10.17816/OV633493

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yablokov MM, Fabrikantov OL, Yablokova NV. Silicone oil tamponade in surgical treatment of rhegmatogenous retinal detachment. Russian Ophthalmological Journal. 2022;15(4):173–177. EDN: LZEFDQ doi: 10.21516/2072-0076-2022-15-4-173-177

[2]

Яблоков М.М., Фабрикантов О.Л., Яблокова Н.В. Силиконовая тампонада в хирургическом лечении регматогенной отслойки сетчатки // Российский офтальмологический журнал. 2022. Т. 15, № 4. С. 173–177. EDN: LZEFDQ doi: 10.21516/2072-0076-2022-15-4-173-177

[3]

Abu-Yaghi NE, Abu Gharbieh YA, Al-Amer AM, et al. Characteristics, fates and complications of long-term silicone oil tamponade after pars plana vitrectomy. BMC Ophthalmol. 2020;20:336. doi: 10.1186/s12886-020-01608-5

[4]

Abu-Yaghi N.E., Abu Gharbieh Y.A., Al-Amer A.M., et al. Characteristics, fates and complications of long-term silicone oil tamponade after pars plana vitrectomy // BMC Ophthalmol. 2020. Vol. 20. ID336. doi: 10.1186/s12886-020-01608-5

[5]

Tashmukhamedov AA. Silicone oil: physical properties and clinical use (a literature review). The EYE GLAZ. 2020;22(4):42–49. EDN: TEIZGU doi: 10.33791/2222-4408-2020-4-42-49

[6]

Ташмухамедов А.А. Силиконовое масло: физические свойства и клиническое применение (обзор литературы) // The EYE ГЛАЗ. 2020. Т. 22, № 4. С. 42–49. EDN: TEIZGU doi: 10.33791/2222-4408-2020-4-42-49

[7]

Confalonieri F, Josifovska N, Boix-Lemonche G, et al. Vitreous substitutes from bench to the operating room in a translational approach: review and future endeavors in vitreoretinal surgery. Int J Mol Sci. 2023;24(4):3342. doi: 10.3390/ijms24043342

[8]

Confalonieri F., Josifovska N., Boix-Lemonche G., et al. Vitreous substitutes from bench to the operating room in a translational approach: review and future endeavors in vitreoretinal surgery // Int J Mol Sci. 2023. Vol. 24, N 4. ID 3342. doi: 10.3390/ijms24043342

[9]

Coman Cernat CC, Munteanu M, Patoni Popescu SI, et al. Silicone oil complications in vitreoretinal surgery. Rom J Ophthalmol. 2022;66(4):299–303. doi: 10.22336/rjo.2022.55

[10]

Coman Cernat C.C., Munteanu M., Patoni Popescu S.I., et al. Silicone oil complications in vitreoretinal surgery // Rom J Ophthalmol. 2022. Vol. 66, N 4. P. 299–303. doi: 10.22336/rjo.2022.55

[11]

Valentín-Bravo FJ, García-Onrubia L, Andrés-Iglesias C, et al. Complications associated with the use of silicone oil in vitreoretinal surgery: A systemic review and meta-analysis. Acta Ophthalmol. 2022;100(4):e864–e880. doi: 10.1111/aos.15055

[12]

Valentín-Bravo F.J., García-Onrubia L., Andrés-Iglesias C., et al. Complications associated with the use of silicone oil in vitreoretinal surgery: A systemic review and meta-analysis // Acta Ophthalmol. 2022. Vol. 100, N 4. P. e864–e880. doi: 10.1111/aos.15055

[13]

Miller JB, Papakostas TD, Vavvas DG. Complications of emulsified silicone oil after retinal detachment repair. Semin Ophthalmol. 2014;29(5–6):312–318. doi: 10.3109/08820538.2014.962181

[14]

Miller J.B., Papakostas T.D., Vavvas D.G. Complications of emulsified silicone oil after retinal detachment repair // Semin Ophthalmol. 2014. Vol. 29, N 5–6. P. 312–318. doi: 10.3109/08820538.2014.962181

[15]

Issa R, Xia T, Zarbin MA, Bhagat N. Silicone oil removal: post-operative complications. Eye (Lond). 2020;34(3):537–543. doi: 10.1038/s41433-019-0551-7

[16]

Issa R., Xia T., Zarbin M.A., Bhagat N. Silicone oil removal: post-operative complications // Eye (Lond). 2020. Vol. 34, N 3. P. 537–543. doi: 10.1038/s41433-019-0551-7

[17]

Solov’eva EP, Muslimov SA. Silicone oil tamponade as a risk factor of complications. Russian annals of ophthalmology. 2013; 129(3):28–31. EDN: QYLKNZ

[18]

Соловьева Е.П., Муслимов С.А. Замещение стекловидного тела силиконовым маслом как фактор риска развития осложнений // Вестник офтальмологии. 2013. Т. 129, № 3. С. 28–31. EDN: QYLKNZ

[19]

Pakravan P, Shaheen A, Patel V, et al. Unexplained vision loss associated with intraocular silicone oil tamponade in rhegmatogenous retinal detachment repair. J Vitreoretin Dis. 2023;7(4):299–304. doi: 10.1177/24741264231161121

[20]

Pakravan P., Shaheen A., Patel V., et al. Unexplained vision loss associated with intraocular silicone oil tamponade in rhegmatogenous retinal detachment repair // J Vitreoretin Dis. 2023. Vol. 7, N 4. P. 299–304. doi: 10.1177/24741264231161121

[21]

Raczyńska D, Mitrosz K, Raczyńska K, Glasner L. The influence of silicone oil on the ganglion cell complex after pars plana vitrectomy for rhegmatogenous retinal detachment. Curr Pharm Des. 2018;24(29):3476–3493. doi: 10.2174/1381612824666180813115438

[22]

Raczyńska D., Mitrosz K., Raczyńska K., Glasner L. The influence of silicone oil on the ganglion cell complex after pars plana vitrectomy for rhegmatogenous retinal detachment // Curr Pharm Des. 2018. Vol. 24, N 29. P. 3476–3493. doi: 10.2174/1381612824666180813115438

[23]

Latkowska M, Gajdzis M, Kaczmarek R. Emulsification of silicone oils: altering factors and possible complications — a narrative review. J Clin Med. 2024;13(8):2407. doi: 10.3390/jcm13082407

[24]

Latkowska M., Gajdzis M., Kaczmarek R. Emulsification of silicone oils: altering factors and possible complications — a narrative review // J Clin Med. 2024. Vol. 13, N 8. ID 2407. doi: 10.3390/jcm13082407

[25]

Takhchidy KhP, Metaeva SA, Glinchuk NYa, Gazal NA. Basis of early removal of silicone oil during treatment of hard retinal detachment of different genesis. Vestnik of the Orenburg State University. 2004;(S):60–65. EDN: JVEJPV

[26]

Тахчиди Х.П., Метаев С.А., Глинчук Н.Я., Газаль Н.А. Обоснование раннего удаления силиконового масла при лечении тяжёлых отслоек сетчатки различного генеза // Вестник Оренбургского государственного университета. 2004. № S. С. 60–65.

[27]

Er D, Öner H, Kaya M, Donmez O. Evaluation of the effects of silicone oil on the macula with optical coherence tomography in patients with rhegmatogenous retinal detachment. Turk J Ophthalmol. 2021;51(4):218–224. doi: 10.4274/tjo.galenos.2020.48376

[28]

Er D., Öner H., Kaya M., Donmez O. Evaluation of the effects of silicone oil on the macula with optical coherence tomography in patients with rhegmatogenous retinal detachment // Turk J Ophthalmol. 2021. Vol. 51, N 4. P. 218–224. doi: 10.4274/tjo.galenos.2020.48376

[29]

Chen Y, Kearns VR, Zhou L, et al. Silicone oil in vitreoretinal surgery: indications, complications, new developments and alternative long-term tamponade agents. Acta Ophthalmol. 2021;99(3):240–250. doi: 10.1111/aos.14604

[30]

Chen Y., Kearns V.R., Zhou L., et al. Silicone oil in vitreoretinal surgery: indications, complications, new developments and alternative long-term tamponade agents // Acta Ophthalmol. 2021. Vol. 99, N 3. P. 240–250. doi: 10.1111/aos.14604

[31]

Romano MR, Ferrara M, Nepita I, et al. Biocompatibility of intraocular liquid tamponade agents: an update. Eye (Lond). 2021;35(10):2699–2713. doi: 10.1038/s41433-021-01596-w

[32]

Romano M.R., Ferrara M., Nepita I., et al. Biocompatibility of intraocular liquid tamponade agents: an update // Eye (Lond). 2021. Vol. 35, N 10. P. 2699–2713. doi: 10.1038/s41433-021-01596-w

[33]

Romano MR, Cuomo F, Massarotti N, et al. Temperature effect on rheological behavior of silicone oils. A model for the viscous heating. J Phys Chem B. 2017;121(29):7048–7054. doi: 10.1021/acs.jpcb.7b03351

[34]

Romano M.R., Cuomo F., Massarotti N., et al. Temperature effect on rheological behavior of silicone oils. A model for the viscous heating // J Phys Chem B. 2017. Vol. 121, N 29. P. 7048–7054. doi: 10.1021/acs.jpcb.7b03351

[35]

Russo A, Morescalchi F, Donati S, et al. Heavy and standard silicone oil: intraocular inflammation. Int Ophthalmol. 2018;38(2): 855–867. doi: 10.1007/s10792-017-0489-3

[36]

Russo A., Morescalchi F., Donati S., et al. Heavy and standard silicone oil: intraocular inflammation // Int Ophthalmol. 2018. Vol. 38, N 2. P. 855–867. doi: 10.1007/s10792-017-0489-3

[37]

Francis JH, Latkany PA, Rosenthal JL. Mechanical energy from intraocular instruments cause emulsification of silicone oil. Br J Ophthalmol. 2007;91(6):818–821. doi: 10.1136/bjo.2006.103994

[38]

Francis J.H., Latkany P.A., Rosenthal J.L. Mechanical energy from intraocular instruments cause emulsification of silicone oil // Br J Ophthalmol. 2007. Vol. 91, N 6. P. 818–821. doi: 10.1136/bjo.2006.103994

[39]

Chan YK, Czanner G, Shum HC, et al. Towards better characterization and quantification of emulsification of silicone oil in vitro. Acta Ophthalmol. 2017;95(5):e385–e392. doi: 10.1111/aos.13258

[40]

Chan Y.K., Czanner G., Shum H.C., et al. Towards better characterization and quantification of emulsification of silicone oil in vitro // Acta Ophthalmol. 2017. Vol. 95, N 5. P. e385–e392. doi: 10.1111/aos.13258

[41]

Mendichi R, Schieroni AG, Piovani D, et al. Comparative study of chemical composition, molecular and rheological properties of silicone oil medical devices. Transl Vis Sci Technol. 2019;8(5):9. doi: 10.1167/tvst.8.5.9

[42]

Mendichi R., Schieroni A.G., Piovani D., et al. Comparative study of chemical composition, molecular and rheological properties of silicone oil medical devices // Transl Vis Sci Technol. 2019. Vol. 8, N 5. P. 9. doi: 10.1167/tvst.8.5.9

[43]

Nayef LM, Khan MF, Brook MA. Low molecular weight silicones particularly facilitate human serum albumin denaturation. Colloids Surf B Biointerfaces. 2015;128:586–593. doi: 10.1016/j.colsurfb.2015.03.013

[44]

Nayef L.M., Khan M.F., Brook M.A. Low molecular weight silicones particularly facilitate human serum albumin denaturation // Colloids Surf B Biointerfaces. 2015. Vol. 128. P. 586–593. doi: 10.1016/j.colsurfb.2015.03.013

[45]

Caramoy A, Kearns VR, Chan YK, et al. Development of emulsification resistant heavier-than-water tamponades using high molecular weight silicone oil polymers. J Biomater Appl. 2015;30(2): 212–220. doi: 10.1177/0885328215575623

[46]

Caramoy A., Kearns V.R., Chan Y.K., et al. Development of emulsification resistant heavier-than-water tamponades using high molecular weight silicone oil polymers // J Biomater Appl. 2015. Vol. 30, N 2. P. 212–220. doi: 10.1177/0885328215575623

[47]

Kazimirova EG, Shiryaev VV, Lyskin PV, et al. Silicone oil tamponade hydrostatics and technology for additional mechanical support of retina. Modern technologies in medicine. 2018;10(4):15–23. EDN: MKKOUX doi: 10.17691/stm2018.10.4.02

[48]

Казимирова Е.Г., Ширяев В.В., Лыскин П.В., и др. Гидростатика силиконовой тампонады витреальной полости в аспекте возможности дополнительной механической фиксации сетчатки // Современные технологии в медицине. 2018. Т. 10, № 4. С. 15–23. EDN: MKKOUX doi: 10.17691/stm2018.10.4.02

[49]

Isakova K, Pralits JO, Romano MR, et al. Equilibrium shape of the aqueous humor-vitreous substitute interface in vitrectomized eyes. J Model Ophthalmol. 2017;3:31–46. doi: 10.35119/maio.v1i3.36

[50]

Isakova K., Pralits J.O., Romano M.R., et al. Equilibrium shape of the aqueous humor-vitreous substitute interface in vitrectomized eyes // J Model Ophthalmol. 2017. Vol. 3. P. 31–46. doi: 10.35119/maio.v1i3.36

[51]

Isakova K, Pralits JO, Repetto R, Romano MR. A model for the linear stability of the interface between aqueous humor and vitreous substitutes after vitreoretinal surgery. Phys Fluids. 2014;26:124101. doi: 10.1063/1.4902163

[52]

Isakova K., Pralits J.O., Repetto R., Romano M.R. A model for the linear stability of the interface between aqueous humor and vitreous substitutes after vitreoretinal surgery // Phys Fluids. 2014. Vol. 26. ID 124101. doi: 10.1063/1.4902163

[53]

Chan YK, Ng CO, Knox PC, et al. Emulsification of silicone oil and eye movements. Invest Ophthalmol Vis Sci. 2011;52(13):9721–9727. doi: 10.1167/iovs.11-8586

[54]

Chan Y.K., Ng C.O., Knox P.C., et al. Emulsification of silicone oil and eye movements // Invest Ophthalmol Vis Sci. 2011. Vol. 52, N 13. P. 9721–9727. doi: 10.1167/iovs.11-8586

[55]

Bonfiglio A, Lagazzo A, Repetto R, Stocchino A. An experimental model of vitreous motion induced by eye rotations. Eye Vis (Lond). 2015;2:10. doi: 10.1186/s40662-015-0020-8

[56]

Bonfiglio A., Lagazzo A., Repetto R., Stocchino A. An experimental model of vitreous motion induced by eye rotations // Eye Vis (Lond). 2015. Vol. 2. ID10. doi: 10.1186/s40662-015-0020-8

[57]

Wang R, Snead M, Alexander P, Wilson ID. Assessing bulk emulsification at the silicone oil — saline solution interface in a 3D model of the eye. Acta Ophthalmol. 2021;99(2):e209–e214. doi: 10.1111/aos.14539

[58]

Wang R., Snead M., Alexander P., Wilson I.D. Assessing bulk emulsification at the silicone oil — saline solution interface in a 3D model of the eye // Acta Ophthalmol. 2021. Vol. 99, N 2. P. e209–e214. doi: 10.1111/aos.14539

[59]

Ghoraba HH, Zaky AG, Abd Al Fatah HM, et al. Sticky silicone oil. Retina. 2017;37(8):1599–1606. doi: 10.1097/IAE.0000000000001377

[60]

Ghoraba H.H., Zaky A.G., Abd Al Fatah H.M., et al. Sticky silicone oil // Retina. 2017. Vol. 37, N 8. P. 1599–1606. doi: 10.1097/IAE.0000000000001377

[61]

Lu Y, Chan YK, Lau LH, et al. Adhesion of silicone oil and emulsification: an in vitro assessment using a microfluidic device and “Eye-on-a-Chip”. Acta Ophthalmol. 2019;97(3):313–318. doi: 10.1111/aos.13982

[62]

Lu Y., Chan Y.K., Lau L.H., et al. Adhesion of silicone oil and emulsification: an in vitro assessment using a microfluidic device and «Eye-on-a-Chip» // Acta Ophthalmol. 2019. Vol. 97, N 3. P. 313–318. doi: 10.1111/aos.13982

[63]

Wetterqvist C, Wong D, Williams R, et al. Tamponade efficiency of perfluorohexyloctane and silicone oil solutions in a model eye chamber. Br J Ophthalmol. 2004;88(5):692–696. doi: 10.1136/bjo.2003.024737

[64]

Wetterqvist C., Wong D., Williams R., et al. Tamponade efficiency of perfluorohexyloctane and silicone oil solutions in a model eye chamber // Br J Ophthalmol. 2004. Vol. 88, N 5. P. 692–696. doi: 10.1136/bjo.2003.024737

[65]

Nepita I, Repetto R, Pralits JO, et al. The role of endogenous proteins on the emulsification of silicone oils used in vitreoretinal surgery. Biomed Res Int. 2020;2020:2915010. doi: 10.1155/2020/2915010

[66]

Nepita I., Repetto R., Pralits J.O., et al. The role of endogenous proteins on the emulsification of silicone oils used in vitreoretinal surgery // Biomed Res Int. 2020. Vol. 2020. ID 2915010. doi: 10.1155/2020/2915010

[67]

Savion N, Alhalel A, Treister G, Bartov E. Role of blood components in ocular silicone oil emulsification. Studies on an in vitro model. Invest Ophthalmol Vis Sci. 1996;37(13):2694–2699.

[68]

Savion N., Alhalel A., Treister G., Bartov E. Role of blood components in ocular silicone oil emulsification. Studies on an in vitro model // Invest Ophthalmol Vis Sci. 1996. Vol. 37, N 13. P. 2694–2699.

[69]

Caramoy A, Schröder S, Fauser S, Kirchhof B. In vitro emulsification assessment of new silicone oils. Br J Ophthalmol. 2010;94(4):509–512. doi: 10.1136/bjo.2009.170852

[70]

Caramoy A., Schröder S., Fauser S., Kirchhof B. In vitro emulsification assessment of new silicone oils // Br J Ophthalmol. 2010. Vol. 94, N 4. P. 509–512. doi: 10.1136/bjo.2009.170852

[71]

Pichi F, Hay S, Abboud EB. Inner retinal toxicity due to silicone oil: a case series and review of the literature. Int Ophthalmol. 2020;40(9):2413–2422. doi: 10.1007/s10792-020-01418-0

[72]

Pichi F., Hay S., Abboud E.B. Inner retinal toxicity due to silicone oil: a case series and review of the literature // Int Ophthalmol. 2020. Vol. 40, N 9. P. 2413–2422. doi: 10.1007/s10792-020-01418-0

[73]

Soós J, Resch MD, Berkó S, et al. Comparison of hydrophilic ophthalmic media on silicone oil emulsification. PLoS One. 2020;15(6): e0235067. doi: 10.1371/journal.pone.0235067

[74]

Soós J., Resch M.D., Berkó S., et al. Comparison of hydrophilic ophthalmic media on silicone oil emulsification // PLoS One. 2020. Vol. 15, N 6. ID e0235067. doi: 10.1371/journal.pone.0235067

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1101KB)

335

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/