Biomechanical parameters of the fibrous capsule of the eyeball in pseudoexfoliative glaucoma in comparison with primary open-angle glaucoma
Alexey V. Malyshev , Anastasiya S. Apostolova , Aleksey A. Sergienko , Adam F. Teshev , Garry Yu. Karapetov , Marina K. Ashkhamakhova , Bella N. Khatsukova
Ophthalmology Reports ›› 2025, Vol. 18 ›› Issue (1) : 25 -34.
Biomechanical parameters of the fibrous capsule of the eyeball in pseudoexfoliative glaucoma in comparison with primary open-angle glaucoma
BACKGROUND: Pseudoexfoliation syndrome is currently considered as a systemic disorder of the connective tissue metabolism with the accumulation in all corneal cell layers of pseudoexfoliation syndrome deposits, which disrupt corneal morphology and biomechanics.
AIM: to study the features of biomechanical parameters of the fibrous capsule of eyes in primary open-angle glaucoma (POAG) in comparison with those in pseudoexfoliative glaucoma (PEG).
MATERIALS AND METHODS: We compared 65 eyes with POAG and 77 eyes with PEG aged under 80 years. The control group consisted of 18 healthy eyes. Biomechanical indicators were compared, such as: DA Ratio, Integr. Radius, SP-A1, SSI, BGF, biomechanically corrected intraocular pressure (bIOP) obtained with Pentacam (Oculus) and CorVis ST.
RESULTS: Patients with PEG were elder (68.013 ± 0.75 years) in contrast to POAG patients (60.03 ± 1.05 years) (p = 0.001), had a thinner central retinal thickness (CRT) — 543.99 ± 3.9 µm versus 559.33 ± 4.4 µm in those with POAG (p = 0.010). The IOP level did not differ between groups, and no correlation with CRT was detected. Indicators of corneal stiffness: DA ratio Integr. Radius did not differ between POAG, PEG and control group. The SP-A1 parameter also did not differ between POAG and PEG patients, while there were differences between PEG patients and the control group (p = 0.046). Moreover, in eyes with POAG, SP-A1 directly correlates with IOP Ро (p = 0.001) and CRT (p = 0.001), in those with PEG — p = 0.001 and p = 0.001, respectively. The SSI index in PEG was higher and amounted to 1.38 ± 0.03 versus 1.27 ± 0.03 in POAG (p = 0.013), while it correlated with age only in the case of PEG (p = 0.007). A correlation between SSI and CTR was also revealed — in POAG (p = 0.018), in PEG (p = 0.001). In PEG, BGF shows higher values (25.92 ± 2.3) than in POAG (17.71 ± 2.2; p = 0.010). BGF has no correlation with age (p = 0.094 and p = 0.737 for POAG and PEG, respectively), depends on CRT (p = 0.001 and p = 0.027, respectively), on bIOP (p = 0.001 and p = 0.001, respectively), and on SP-A1 (p = 0.009 and p = 0.001, respectively). The only parameter that was higher in PEG than in POAG was SSI, which did not correlate with the BGF indicator (p = 0.642 and p = 0.327, respectively).
CONCLUSIONS: We did not find any fundamental differences in biomechanics between PEG and POAG, which could explain the significant rates of progression of PEG. Based on our data, it is obvious that the eye with PEG differs from that with POAG being more rigid, even at similar IOP values.
primary open-angle glaucoma / pseudoexfoliative glaucoma / central corneal thickness / tonometry / corneal-compensated pressure / biomechanical properties of the fibrous capsule of the eye
| [1] |
Nazarali S, Damji F, Damji KF. What have we learned about exfoliation syndrome since its discovery by John Lindberg 100 years ago? Br J Ophthalmol. 2018;102(10):1342–1350. doi: 10.1136/bjophthalmol-2017-311321 |
| [2] |
Nazarali S., Damji F., Damji K.F. What have we learned about exfoliation syndrome since its discovery by John Lindberg 100 years ago? // Br J Ophthalmol. 2018. Vol. 102, N 10. P. 1342–1350. doi: 10.1136/bjophthalmol-2017-311321 |
| [3] |
Ritch R, Schlötzer-Schrehardt U. Exfoliation syndrome. Surv Ophthalmol. 2001;45(4):265–315. doi: 10.1016/s0039-6257(00)00196-x |
| [4] |
Ritch R., Schlötzer-Schrehardt U. Exfoliation syndrome // Surv Ophthalmol. 2001. Vol. 45, N 4. P. 265–315. doi: 10.1016/s0039-6257(00)00196-x |
| [5] |
Zheng X, Shiraishi A, Okuma S, et al. In vivo confocal microscopic evidence of keratopathy in patients with pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci. 2011;52(3):1755–1761. doi: 10.1167/iovs.10-6098 |
| [6] |
Zheng X., Shiraishi A., Okuma S., et al. In vivo confocal microscopic evidence of keratopathy in patients with pseudoexfoliation syndrome // Invest Ophthalmol Vis Sci. 2011. Vol. 52, N 3. P. 1755–1761. doi: 10.1167/iovs.10-6098 |
| [7] |
Ayala M. Corneal hysteresis in normal subjects and in patients with primary open-angle glaucoma and pseudoexfoliation glaucoma. Ophthalmic Res. 2011;46(4):187–191. doi: 10.1159/000326896 |
| [8] |
Ayala M. Corneal hysteresis in normal subjects and in patients with primary open-angle glaucoma and pseudoexfoliation glaucoma // Ophthalmic Res. 2011. Vol. 46, N 4. P. 187–191. doi: 10.1159/000326896 |
| [9] |
Fortune B, Reynaud J, Hardin C, et al. Experimental glaucoma causes optic nerve head neural rim tissue compression: a potentially important mechanism of axon injury. Invest Ophthalmol Vis Sci. 2016;57(10):4403–4411. doi: 10.1167/iovs.16-20000 |
| [10] |
Fortune B., Reynaud J., Hardin C., et al. Experimental glaucoma causes optic nerve head neural rim tissue compression: a potentially important mechanism of axon injury // Invest Ophthalmol Vis Sci. 2016. Vol. 57, N 10. P. 4403–4411. doi: 10.1167/iovs.16-20000 |
| [11] |
Musch DC, Shimizu T, Niziol LM, et al. Clinical characteristics of newly diagnosed primary, pigmentary and pseudoexfoliative open-angle glaucoma in the Collaborative Initial Glaucoma Treatment Study. Br J Ophthalmol. 2012;96(9):1180–1184. doi: 10.1136/bjophthalmol-2012-301820 |
| [12] |
Musch D.C., Shimizu T., Niziol L.M., et al. Clinical characteristics of newly diagnosed primary, pigmentary and pseudoexfoliative open-angle glaucoma in the Collaborative Initial Glaucoma Treatment Study // Br J Ophthalmol. 2012. Vol. 96, N 9. P. 1180–1184. doi: 10.1136/bjophthalmol-2012-301820 |
| [13] |
Liu Q, Pang C, Liu C, et al. Correlations among corneal biomechanical parameters, stiffness, and thickness measured using Corvis ST and Pentacam in patients with ocular hypertension. J Ophthalmol. 2022;2022:7387581. doi: 10.1155/2022/7387581 |
| [14] |
Liu Q., Pang C., Liu C., et al. Correlations among corneal biomechanical parameters, stiffness, and thickness measured using Corvis ST and Pentacam in patients with ocular hypertension // J Ophthalmol. 2022. Vol. 2022. P. 7387581. doi: 10.1155/2022/7387581 |
| [15] |
Eliasy A, Chen KJ, Vinciguerra R, et al. Determination of corneal biomechanical behavior in-vivo for healthy eyes using Corvis ST tonometry: stress-strain index. Front Bioeng Biotechnol. 2019;7:105. doi: 10.3389/fbioe.2019.00105 |
| [16] |
Eliasy A., Chen K.J., Vinciguerra R., et al. Determination of corneal biomechanical behavior in-vivo for healthy eyes using Corvis ST tonometry: stress-strain index // Front Bioeng Biotechnol. 2019. Vol. 7. P. 105. doi: 10.3389/fbioe.2019.00105 |
| [17] |
Mitchell P, Wang JJ, Hourihan F. The relationship between glaucoma and pseudoexfoliation: the Blue Mountains Eye Study. Arch Ophthalmol. 1999;117(10):1319–1324. doi: 10.1001/archopht.117.10.1319 |
| [18] |
Mitchell P., Wang J.J., Hourihan F. The relationship between glaucoma and pseudoexfoliation: the Blue Mountains Eye Study // Arch Ophthalmol. 1999. Vol. 117, N 10. P. 1319–1324. doi: 10.1001/archopht.117.10.1319 |
| [19] |
Kumaran N, Girgis R. Pseudoexfoliative deposits on an intraocular lens implant. Eye (Lond). 2011;25(10):1378–1379. doi: 10.1038/eye.2011.159 |
| [20] |
Kumaran N., Girgis R. Pseudoexfoliative deposits on an intraocular lens implant // Eye (Lond). 2011. Vol. 25, N 10. P. 1378–1379. doi: 10.1038/eye.2011.159 |
| [21] |
Palko JR, Qi O, Sheybani A. Corneal alterations associated with pseudoexfoliation syndrome and glaucoma: a literature review. J Ophthalmic Vis Res. 2017;12(3):312–324. doi: 10.4103/jovr.jovr_28_17 |
| [22] |
Palko J.R., Qi O., Sheybani A. Corneal alterations associated with pseudoexfoliation syndrome and glaucoma: a literature review // J Ophthalmic Vis Res. 2017. Vol. 12, N 3. P. 312–324. doi: 10.4103/jovr.jovr_28_17 |
| [23] |
Apostolova AS, Gurdzhijan KM, Shipilov VA. Corneal endothelium in eyes with pseudoexfoliation syndrome (data of endothelial microscopy). Ophthalmology in Russia. 2017;14(4):347–354. (In Russ.) EDN: URSBAK doi: 10.18008/1816-5095-2017-4-347-354 |
| [24] |
Апостолова А.С., Гурджиян К.М., Шипилов В.А. Состояние эндотелия роговицы при псевдоэксфолиативном синдроме (по данным эндотелиальной микроскопии) // Офтальмология. 2017. Т. 14, № 4. С. 347–354. EDN: URSBAK doi: 10.18008/1816-5095-2017-4-347-354 |
| [25] |
Pradhan ZS, Deshmukh S, Dixit S, et al. A comparison of the corneal biomechanics in pseudoexfoliation glaucoma, primary open-angle glaucoma and healthy controls using Corvis ST. PLoS One. 2020;15(10):e0241296. doi: 10.1371/journal.pone.0241296 |
| [26] |
Pradhan Z.S., Deshmukh S., Dixit S., et al. A comparison of the corneal biomechanics in pseudoexfoliation glaucoma, primary open-angle glaucoma and healthy controls using Corvis ST // PLoS One. 2020. Vol. 15, N 10. P. e0241296. doi: 10.1371/journal.pone.0241296 |
| [27] |
Pradhan ZS, Deshmukh S, Dixit S, et al. A comparison of the corneal biomechanics in pseudoexfoliation syndrome, pseudoexfoliation glaucoma, and healthy controls using Corvis® Scheimpflug Technology. Indian J Ophthalmol. 2020;68(5):787–792. doi: 10.4103/ijo.IJO_1550_19 |
| [28] |
Pradhan Z.S., Deshmukh S., Dixit S., et al. A comparison of the corneal biomechanics in pseudoexfoliation syndrome, pseudoexfoliation glaucoma, and healthy controls using Corvis® Scheimpflug Technology // Indian J Ophthalmol. 2020. Vol. 68, N 5. P. 787–792. doi: 10.4103/ijo.IJO_1550_19 |
| [29] |
Qassim A, Mullany S, Abedi F, et al. Corneal stiffness parameters are predictive of structural and functional progression in glaucoma suspect eyes. Ophthalmology. 2021;128(7):993–1004. doi: 10.1016/j.ophtha.2020.11.021 |
| [30] |
Qassim A., Mullany S., Abedi F., et al. Corneal stiffness parameters are predictive of structural and functional progression in glaucoma suspect eyes // Ophthalmology. 2021. Vol. 128, N 7. P. 993–1004. doi: 10.1016/j.ophtha.2020.11.021 |
| [31] |
Subasi S, Yuksel N, Basaran E, Pirhan D. Comparison of vessel density in macular and peripapillary regions between primary open-angle glaucoma and pseudoexfoliation glaucoma using OCTA. Int Ophthalmol. 2021;41(1):173–184. doi: 10.1007/s10792-020-01564-5 |
| [32] |
Subasi S., Yuksel N., Basaran E., Pirhan D. Comparison of vessel density in macular and peripapillary regions between primary open-angle glaucoma and pseudoexfoliation glaucoma using OCTA // Int Ophthalmol. 2021. Vol. 41, N 1. P. 173–184. doi: 10.1007/s10792-020-01564-5 |
| [33] |
Cornelius A, Pilger D, Riechardt A, et al. Macular, papillary and peripapillary perfusion densities measured with optical coherence tomography angiography in primary open angle glaucoma and pseudoexfoliation glaucoma. Graefes Arch Clin Exp Ophthalmol. 2022;260(3):957–965. doi: 10.1007/s00417-021-05321-x |
| [34] |
Cornelius A., Pilger D., Riechardt A., et al. Macular, papillary and peripapillary perfusion densities measured with optical coherence tomography angiography in primary open angle glaucoma and pseudoexfoliation glaucoma // Graefes Arch Clin Exp Ophthalmol. 2022. Vol. 260, N 3. P. 957–965. doi: 10.1007/s00417-021-05321-x |
| [35] |
Moghimi S, Mazloumi M, Johari M, et al. Evaluation of lamina cribrosa and choroid in nonglaucomatous patients with pseudoexfoliation syndrome using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2016;57(3):1293–1300. doi: 10.1167/iovs.15-18312 |
| [36] |
Moghimi S., Mazloumi M., Johari M., et al. Evaluation of lamina cribrosa and choroid in nonglaucomatous patients with pseudoexfoliation syndrome using spectral-domain optical coherence tomography // Invest Ophthalmol Vis Sci. 2016. Vol. 57, N 3. P. 1293–1300. doi: 10.1167/iovs.15-18312 |
| [37] |
Kim S, Sung KR, Lee JR, Lee KS. Evaluation of lamina cribrosa in pseudoexfoliation syndrome using spectral-domain optical coherence tomography enhanced depth imaging. Ophthalmology. 2013;120(9):1798–1803. doi: 10.1016/j.ophtha.2013.02.015 |
| [38] |
Kim S., Sung K.R., Lee J.R., Lee K.S. Evaluation of lamina cribrosa in pseudoexfoliation syndrome using spectral-domain optical coherence tomography enhanced depth imaging // Ophthalmology. 2013. Vol. 120, N 9. P. 1798–1803. doi: 10.1016/j.ophtha.2013.02.015 |
Eco-Vector
/
| 〈 |
|
〉 |