Eye microcirculation in glaucoma. Part 2. Disorders of regional hemodynamics

Sergey Yu. Petrov , Elena N. Orlova , Tatiana N. Kiseleva , Tatiana D. Okhotsimskaya , Oksana I. Markelova

Ophthalmology Reports ›› 2024, Vol. 17 ›› Issue (4) : 99 -110.

PDF (1497KB)
Ophthalmology Reports ›› 2024, Vol. 17 ›› Issue (4) : 99 -110. DOI: 10.17816/OV630422
Reviews
review-article

Eye microcirculation in glaucoma. Part 2. Disorders of regional hemodynamics

Author information +
History +
PDF (1497KB)

Abstract

Glaucoma is one of the leading causes of blindness worldwide. The etiology of primary glaucoma is usually divided into mechanical and vascular mechanisms. Research of the vascular component of glaucoma was going on since the beginning of the last century with continuous improvement of diagnostic methods from invasive to high-tech non-contact ones. Modern and promising methods are: ultrasound examination in color Doppler mapping and pulsed Doppler modes, optical coherence tomography angiography, and laser speckle flowgraphy. The review describes specific for glaucoma blood flow changes in ocular vessels, correlating with functional and structural changes: decrease of vascular density in macular, parafoveolar, and peripapillary areas, decrease of the integral indicator of microcirculation, decrease of the indicators of volume and linear blood flow velocities in retinal and choroidal vessels, impaired retrobulbar blood circulation. The analysis of literature data is presented concerning the investigation of hemodynamic disturbances in ocular vessels in normotensive glaucoma and glaucoma in myopic eyes, in systemic blood flow disturbances (arterial hypertension and hypotension) in patients with glaucomatous optic neuropathy.

Keywords

glaucoma / hemodynamics / blood flow / macula / choroid / myopia / normotensive glaucoma / arterial hypertension / hypotension

Cite this article

Download citation ▾
Sergey Yu. Petrov, Elena N. Orlova, Tatiana N. Kiseleva, Tatiana D. Okhotsimskaya, Oksana I. Markelova. Eye microcirculation in glaucoma. Part 2. Disorders of regional hemodynamics. Ophthalmology Reports, 2024, 17(4): 99-110 DOI:10.17816/OV630422

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–267. doi: 10.1136/bjo.2005.081224

[2]

Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020 // Br J Ophthalmol. 2006. Vol. 90, N 3. P. 262–267. doi: 10.1136/bjo.2005.081224

[3]

Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–267. doi: 10.1136/bjo.2005.081224

[4]

Neroev VV, Kiseleva OA, Bessmertny AM. The main results of a multicenter study of epidemiological features of primary open-angle glaucoma in the Russian Federation. Russian Ophthalmological Journal. 2013;6(3):43–46. EDN: QIWMDX

[5]

Нероев В.В., Киселева О.А., Бессмертный А.М. Основные результаты мультицентрового исследования эпидемиологических особенностей первичной открытоугольной глаукомы в Российской Федерации // Российский офтальмологический журнал. 2013. Т. 6, № 3. С. 43–46. EDN: QIWMDX

[6]

Neroev VV, Kiseleva OA, Bessmertny AM. The main results of a multicenter study of epidemiological features of primary open-angle glaucoma in the Russian Federation. Russian Ophthalmological Journal. 2013;6(3):43–46. EDN: QIWMDX

[7]

Sotimehin AE, Ramulu PY. Measuring disability in glaucoma. J Glaucoma. 2018;27(11):939–949. doi: 10.1097/IJG.000\0000000001068

[8]

Sotimehin A.E., Ramulu P.Y. Measuring disability in glaucoma // J Glaucoma. 2018. Vol. 27, N 11. P. 939–949. doi: 10.1097/IJG.000\0000000001068

[9]

Sotimehin AE, Ramulu PY. Measuring disability in glaucoma. J Glaucoma. 2018;27(11):939–949. doi: 10.1097/IJG.000\0000000001068

[10]

Flammer J, Orgul S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359–393. doi: 10.1016/s1350-9462(02)00008-3

[11]

Flammer J., Orgul S., Costa V.P., et al. The impact of ocular blood flow in glaucoma // Prog Retin Eye Res. 2002. Vol. 21, N 4. P. 359–393. doi: 10.1016/s1350-9462(02)00008-3

[12]

Flammer J, Orgul S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359–393. doi: 10.1016/s1350-9462(02)00008-3

[13]

Chen HS, Liu CH, Wu WC, et al. Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Vis Sci. 2017;58(9):3637–3645. doi: 10.1167/iovs.17-21846

[14]

Chen H.S., Liu C.H., Wu W.C., et al. Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes // Invest Ophthalmol Vis Sci. 2017. Vol. 58, N 9. P. 3637–3645. doi: 10.1167/iovs.17-21846

[15]

Chen HS, Liu CH, Wu WC, et al. Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Vis Sci. 2017;58(9):3637–3645. doi: 10.1167/iovs.17-21846

[16]

Cano J, Rahimi M, Xu BY, et al. Relationship between macular vessel density and total retinal blood flow in primary open-angle glaucoma. J Glaucoma. 2021;30(8):666–671. doi: 10.1097/IJG.0000000000001880

[17]

Cano J., Rahimi M., Xu B.Y., et al. Relationship between macular vessel density and total retinal blood flow in primary open-angle glaucoma // J Glaucoma. 2021. Vol. 30, N 8. P. 666–671. doi: 10.1097/IJG.0000000000001880

[18]

Cano J, Rahimi M, Xu BY, et al. Relationship between macular vessel density and total retinal blood flow in primary open-angle glaucoma. J Glaucoma. 2021;30(8):666–671. doi: 10.1097/IJG.0000000000001880

[19]

Yarmohammadi A, Zangwill LM, Manalastas PIC, et al. Peripapillary and macular vessel density in patients with primary open-angle glaucoma and unilateral visual field loss. Ophthalmology. 2018;125(4):578–587. doi: 10.1016/j.ophtha.2017.10.029

[20]

Yarmohammadi A., Zangwill L.M., Manalastas P.I.C., et al. Peripapillary and macular vessel density in patients with primary open-angle glaucoma and unilateral visual field loss // Ophthalmology. 2018. Vol. 125, N 4. P. 578–587. doi: 10.1016/j.ophtha.2017.10.029

[21]

Yarmohammadi A, Zangwill LM, Manalastas PIC, et al. Peripapillary and macular vessel density in patients with primary open-angle glaucoma and unilateral visual field loss. Ophthalmology. 2018;125(4):578–587. doi: 10.1016/j.ophtha.2017.10.029

[22]

Xu H, Kong XM. Study of retinal microvascular perfusion alteration and structural damage at macular region in primary open-angle glaucoma patients. Zhonghua Yan Ke Za Zhi. 2017;53(2):98–103. doi: 10.3760/cma.j.issn.0412-4081.2017.02.006

[23]

Xu H., Kong X.M. Study of retinal microvascular perfusion alteration and structural damage at macular region in primary open-angle glaucoma patients // Zhonghua Yan Ke Za Zhi. 2017. Vol. 53, N 2. P. 98–103. doi: 10.3760/cma.j.issn.0412-4081.2017.02.006

[24]

Xu H, Kong XM. Study of retinal microvascular perfusion alteration and structural damage at macular region in primary open-angle glaucoma patients. Zhonghua Yan Ke Za Zhi. 2017;53(2):98–103. doi: 10.3760/cma.j.issn.0412-4081.2017.02.006

[25]

Tao A, Liang Y, Chen J, et al. Structure-function correlation of localized visual field defects and macular microvascular damage in primary open-angle glaucoma. Microvasc Res. 2020;130:104005. doi: 10.1016/j.mvr.2020.104005

[26]

Tao A., Liang Y., Chen J., et al. Structure-function correlation of localized visual field defects and macular microvascular damage in primary open-angle glaucoma // Microvasc Res. 2020. Vol. 130. P. 104005. doi: 10.1016/j.mvr.2020.104005

[27]

Tao A, Liang Y, Chen J, et al. Structure-function correlation of localized visual field defects and macular microvascular damage in primary open-angle glaucoma. Microvasc Res. 2020;130:104005. doi: 10.1016/j.mvr.2020.104005

[28]

Li F, Lin F, Gao K, et al. Association of foveal avascular zone area with structural and functional progression in glaucoma patients. Br J Ophthalmol. 2022;106(9):1245–1251. doi: 10.1136/bjophthalmol-2020-318065

[29]

Li F., Lin F., Gao K., et al. Association of foveal avascular zone area with structural and functional progression in glaucoma patients // Br J Ophthalmol. 2022. Vol. 106, N 9. P. 1245–1251. doi: 10.1136/bjophthalmol-2020-318065

[30]

Li F, Lin F, Gao K, et al. Association of foveal avascular zone area with structural and functional progression in glaucoma patients. Br J Ophthalmol. 2022;106(9):1245–1251. doi: 10.1136/bjophthalmol-2020-318065

[31]

Zhang Y, Zhang S, Wu C, et al. Optical coherence tomography angiography of the macula in patients with primary angle-closure glaucoma. Ophthalmic Res. 2021;64(3):440–446. doi: 10.1159/000512756

[32]

Zhang Y., Zhang S., Wu C., et al. Optical coherence tomography angiography of the macula in patients with primary angle-closure glaucoma // Ophthalmic Res. 2021. Vol. 64, N 3. P. 440–446. doi: 10.1159/000512756

[33]

Zhang Y, Zhang S, Wu C, et al. Optical coherence tomography angiography of the macula in patients with primary angle-closure glaucoma. Ophthalmic Res. 2021;64(3):440–446. doi: 10.1159/000512756

[34]

Triolo G, Rabiolo A, Shemonski ND, et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Vis Sci. 2017;58(13):5713–5722. doi: 10.1167/iovs.17-22865

[35]

Triolo G., Rabiolo A., Shemonski N.D., et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients // Invest Ophthalmol Vis Sci. 2017. Vol. 58, N 13. P. 5713–5722. doi: 10.1167/iovs.17-22865

[36]

Triolo G, Rabiolo A, Shemonski ND, et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Vis Sci. 2017;58(13):5713–5722. doi: 10.1167/iovs.17-22865

[37]

Son KY, Han JC, Kee C. Parapapillary deep-layer microvasculature dropout is only found near the retinal nerve fibre layer defect location in open-angle glaucoma. Acta Ophthalmol. 2022;100(1): e174–e180. doi: 10.1111/aos.14856

[38]

Son K.Y., Han J.C., Kee C. Parapapillary deep-layer microvasculature dropout is only found near the retinal nerve fibre layer defect location in open-angle glaucoma // Acta Ophthalmol. 2022. Vol. 100, N 1. P. e174–e180. doi: 10.1111/aos.14856

[39]

Son KY, Han JC, Kee C. Parapapillary deep-layer microvasculature dropout is only found near the retinal nerve fibre layer defect location in open-angle glaucoma. Acta Ophthalmol. 2022;100(1): e174–e180. doi: 10.1111/aos.14856

[40]

Shin JW, Song MK, Kook MS. Association between progressive retinal capillary density loss and visual field progression in open-angle glaucoma patients according to disease stage. Am J Ophthalmol. 2021;226:137–147. doi: 10.1016/j.ajo.2021.01.015

[41]

Shin J.W., Song M.K., Kook M.S. Association between progressive retinal capillary density loss and visual field progression in open-angle glaucoma patients according to disease stage // Am J Ophthalmol. 2021. Vol. 226. P. 137–147. doi: 10.1016/j.ajo.2021.01.015

[42]

Shin JW, Song MK, Kook MS. Association between progressive retinal capillary density loss and visual field progression in open-angle glaucoma patients according to disease stage. Am J Ophthalmol. 2021;226:137–147. doi: 10.1016/j.ajo.2021.01.015

[43]

Wang X, Chen J, Kong X, et al. Quantification of retinal microvascular density using optic coherence tomography angiography in primary angle closure disease. Curr Eye Res. 2021;46(7):1018–1024. doi: 10.1080/02713683.2020.1849728

[44]

Wang X., Chen J., Kong X., et al. Quantification of retinal microvascular density using optic coherence tomography angiography in primary angle closure disease // Curr Eye Res. 2021. Vol. 46, N 7. P. 1018–1024. doi: 10.1080/02713683.2020.1849728

[45]

Wang X, Chen J, Kong X, et al. Quantification of retinal microvascular density using optic coherence tomography angiography in primary angle closure disease. Curr Eye Res. 2021;46(7):1018–1024. doi: 10.1080/02713683.2020.1849728

[46]

Petrov SYu, Okhotsimskaya TD, Filippova OM, et al. The influence of post-COVID-19 syndrome on microcirculation of the optic nerve head among patients with primary open-angle glaucoma. Ophthalmology Reports. 2024;17(1):29–37. (In Russ.) EDN: LPROFU doi: 10.17816/OV625738

[47]

Петров С.Ю., Охоцимская Т.Д., Филиппова О.М., и др. Влияние постковидного синдрома на микроциркуляцию диска зрительного нерва у пациентов с первичной открытоугольной глаукомой // Офтальмологические ведомости. 2024. Т. 17, № 1. С. 29–37. EDN: LPROFU doi: 10.17816/OV625738

[48]

Petrov SYu, Okhotsimskaya TD, Filippova OM, et al. The influence of post-COVID-19 syndrome on microcirculation of the optic nerve head among patients with primary open-angle glaucoma. Ophthalmology Reports. 2024;17(1):29–37. (In Russ.) EDN: LPROFU doi: 10.17816/OV625738

[49]

Jo YH, Sung KR, Shin JW. Comparison of peripapillary choroidal microvasculature dropout in primary open-angle, primary angle-closure, and pseudoexfoliation glaucoma. J Glaucoma. 2020;29(12):1152–1157. doi: 10.1097/IJG.0000000000001650

[50]

Jo Y.H., Sung K.R., Shin J.W. Comparison of peripapillary choroidal microvasculature dropout in primary open-angle, primary angle-closure, and pseudoexfoliation glaucoma // J Glaucoma. 2020. Vol. 29, N 12. P. 1152–1157. doi: 10.1097/IJG.0000000000001650

[51]

Jo YH, Sung KR, Shin JW. Comparison of peripapillary choroidal microvasculature dropout in primary open-angle, primary angle-closure, and pseudoexfoliation glaucoma. J Glaucoma. 2020;29(12):1152–1157. doi: 10.1097/IJG.0000000000001650

[52]

Rao HL, Sreenivasaiah S, Riyazuddin M, et al. Choroidal microvascular dropout in primary angle closure glaucoma. Am J Ophthalmol. 2019;199:184–192. doi: 10.1016/j.ajo.2018.11.021

[53]

Rao H.L., Sreenivasaiah S., Riyazuddin M., et al. Choroidal microvascular dropout in primary angle closure glaucoma // Am J Ophthalmol. 2019. Vol. 199. P. 184–192. doi: 10.1016/j.ajo.2018.11.021

[54]

Rao HL, Sreenivasaiah S, Riyazuddin M, et al. Choroidal microvascular dropout in primary angle closure glaucoma. Am J Ophthalmol. 2019;199:184–192. doi: 10.1016/j.ajo.2018.11.021

[55]

Kim J.A., Lee E.J., Kim T.W. Evaluation of parapapillary choroidal microvasculature dropout and progressive retinal nerve fiber layer thinning in patients with glaucoma. JAMA Ophthalmol. 2019;137(7):810–816. doi: 10.1001/jamaophthalmol.2019.1212

[56]

Kim J.A., Lee E.J., Kim T.W. Evaluation of parapapillary choroidal microvasculature dropout and progressive retinal nerve fiber layer thinning in patients with glaucoma // JAMA Ophthalmol. 2019. Vol. 137, N 7. P. 810–816. doi: 10.1001/jamaophthalmol.2019.1212

[57]

Kim J.A., Lee E.J., Kim T.W. Evaluation of parapapillary choroidal microvasculature dropout and progressive retinal nerve fiber layer thinning in patients with glaucoma. JAMA Ophthalmol. 2019;137(7):810–816. doi: 10.1001/jamaophthalmol.2019.1212

[58]

Lin S, Cheng H, Zhang S, et al. Parapapillary choroidal microvasculature dropout is associated with the decrease in retinal nerve fiber layer thickness: a prospective study. Invest Ophthalmol Vis Sci. 2019;60(2):838–842. doi:10.1167/iovs.18-26115

[59]

Lin S., Cheng H., Zhang S., et al. Parapapillary choroidal microvasculature dropout is associated with the decrease in retinal nerve fiber layer thickness: a prospective study // Invest Ophthalmol Vis Sci. 2019. Vol. 60, N 2. P. 838–842. doi: 10.1167/iovs.18-26115

[60]

Lin S, Cheng H, Zhang S, et al. Parapapillary choroidal microvasculature dropout is associated with the decrease in retinal nerve fiber layer thickness: a prospective study. Invest Ophthalmol Vis Sci. 2019;60(2):838–842. doi:10.1167/iovs.18-26115

[61]

Kim JA, Son DH, Lee EJ, et al. Intereye comparison of the characteristics of the peripapillary choroid in patients with unilateral normal-tension glaucoma. Ophthalmol Glaucoma. 2021;4(5):512–521. doi: 10.1016/j.ogla.2021.02.003

[62]

Kim J.A., Son D.H., Lee E.J., et al. Intereye comparison of the characteristics of the peripapillary choroid in patients with unilateral normal-tension glaucoma // Ophthalmol Glaucoma. 2021. Vol. 4, N 5. P. 512–521. doi: 10.1016/j.ogla.2021.02.003

[63]

Kim JA, Son DH, Lee EJ, et al. Intereye comparison of the characteristics of the peripapillary choroid in patients with unilateral normal-tension glaucoma. Ophthalmol Glaucoma. 2021;4(5):512–521. doi: 10.1016/j.ogla.2021.02.003

[64]

Lee EJ, Han JC, Kee C. Intereye comparison of ocular factors in normal tension glaucoma with asymmetric visual field loss in Korean population. PLoS One. 2017;12(10):e0186236. doi: 10.1371/journal.pone.0186236

[65]

Lee E.J., Han J.C., Kee C. Intereye comparison of ocular factors in normal tension glaucoma with asymmetric visual field loss in Korean population // PLoS One. 2017. Vol. 12, N 10. P. e0186236. doi: 10.1371/journal.pone.0186236

[66]

Lee EJ, Han JC, Kee C. Intereye comparison of ocular factors in normal tension glaucoma with asymmetric visual field loss in Korean population. PLoS One. 2017;12(10):e0186236. doi: 10.1371/journal.pone.0186236

[67]

Jo YH, Shin JW, Song MK, et al. Baseline choroidal microvasculature dropout as a predictor of subsequent visual field progression in open-angle glaucoma. J Glaucoma. 2021;30(8):672–681. doi: 10.1097/IJG.0000000000001853

[68]

Jo Y.H., Shin J.W., Song M.K., et al. Baseline choroidal microvasculature dropout as a predictor of subsequent visual field progression in open-angle glaucoma // J Glaucoma. 2021. Vol. 30, N 8. P. 672–681. doi: 10.1097/IJG.0000000000001853

[69]

Jo YH, Shin JW, Song MK, et al. Baseline choroidal microvasculature dropout as a predictor of subsequent visual field progression in open-angle glaucoma. J Glaucoma. 2021;30(8):672–681. doi: 10.1097/IJG.0000000000001853

[70]

Park HY, Shin DY, Jeon SJ, et al. Association between parapapillary choroidal vessel density measured with optical coherence tomography angiography and future visual field progression in patients with glaucoma. JAMA Ophthalmol. 2019;137(6):681–688. doi: 10.1001/jamaophthalmol.2019.0422

[71]

Park H.Y., Shin D.Y., Jeon S.J., et al. Association between parapapillary choroidal vessel density measured with optical coherence tomography angiography and future visual field progression in patients with glaucoma // JAMA Ophthalmol. 2019. Vol. 137, N 6. P. 681–688. doi: 10.1001/jamaophthalmol.2019.0422

[72]

Park HY, Shin DY, Jeon SJ, et al. Association between parapapillary choroidal vessel density measured with optical coherence tomography angiography and future visual field progression in patients with glaucoma. JAMA Ophthalmol. 2019;137(6):681–688. doi: 10.1001/jamaophthalmol.2019.0422

[73]

Bhalla M, Heisler M, Mammo Z, et al. Investigation of the peripapillary choriocapillaris in normal tension glaucoma, primary open-angle glaucoma, and control eyes. J Glaucoma. 2021;30(8):682–689. doi: 10.1097/IJG.0000000000001861

[74]

Bhalla M., Heisler M., Mammo Z., et al. Investigation of the peripapillary choriocapillaris in normal tension glaucoma, primary open-angle glaucoma, and control eyes // J Glaucoma. 2021. Vol. 30, N 8. P. 682–689. doi: 10.1097/IJG.0000000000001861

[75]

Bhalla M, Heisler M, Mammo Z, et al. Investigation of the peripapillary choriocapillaris in normal tension glaucoma, primary open-angle glaucoma, and control eyes. J Glaucoma. 2021;30(8):682–689. doi: 10.1097/IJG.0000000000001861

[76]

Hashemi H, Fotouhi A, Yekta A, et al. Global and regional estimates of prevalence of refractive errors: Systematic review and meta-analysis. J Curr Ophthalmol. 2018;30(1):3–22. doi: 10.1016/j.joco.2017.08.009

[77]

Hashemi H., Fotouhi A., Yekta A., et al. Global and regional estimates of prevalence of refractive errors: Systematic review and meta-analysis // J Curr Ophthalmol. 2018. Vol. 30, N 1. P. 3–22. doi: 10.1016/j.joco.2017.08.009

[78]

Hashemi H, Fotouhi A, Yekta A, et al. Global and regional estimates of prevalence of refractive errors: Systematic review and meta-analysis. J Curr Ophthalmol. 2018;30(1):3–22. doi: 10.1016/j.joco.2017.08.009

[79]

Erichev VP, Onishchenko AL, Kuroyedov AV, et al. Ophthalmologic risk factors for the development of primary open-angle glaucoma. Russian Journal of Clinical Ophthalmology. 2019;19(2):81–86. (In Russ.) EDN: ZSFTZJ doi: 10.32364/2311-7729-2019-19-2-81-86

[80]

Еричев В.П., Онищенко А.Л., Куроедов А.В., и др. Офтальмологические факторы риска развития первичной открытоугольной глаукомы // РМЖ Клиническая офтальмология. 2019. Т. 19, № 2. С. 81–86. EDN: ZSFTZJ doi: 10.32364/2311-7729-2019-19-2-81-86

[81]

Erichev VP, Onishchenko AL, Kuroyedov AV, et al. Ophthalmologic risk factors for the development of primary open-angle glaucoma. Russian Journal of Clinical Ophthalmology. 2019;19(2):81–86. (In Russ.) EDN: ZSFTZJ doi: 10.32364/2311-7729-2019-19-2-81-86

[82]

Jonas JB, Ohno-Matsui K, Panda-Jonas S. Optic nerve head histopathology in high axial myopia. J Glaucoma. 2017;26(2):187–193. doi: 10.1097/IJG.0000000000000574

[83]

Jonas J.B., Ohno-Matsui K., Panda-Jonas S. Optic nerve head histopathology in high axial myopia // J Glaucoma. 2017. Vol. 26, N 2. P. 187–193. doi: 10.1097/IJG.0000000000000574

[84]

Jonas JB, Ohno-Matsui K, Panda-Jonas S. Optic nerve head histopathology in high axial myopia. J Glaucoma. 2017;26(2):187–193. doi: 10.1097/IJG.0000000000000574

[85]

Wong YZ, Lam AK. The roles of cornea and axial length in corneal hysteresis among emmetropes and high myopes: a pilot study. Curr Eye Res. 2015;40(3):282–289. doi: 10.3109/02713683.2014.922193

[86]

Wong Y.Z., Lam A.K. The roles of cornea and axial length in corneal hysteresis among emmetropes and high myopes: a pilot study // Curr Eye Res. 2015. Vol. 40, N 3. P. 282–289. doi: 10.3109/02713683.2014.922193

[87]

Wong YZ, Lam AK. The roles of cornea and axial length in corneal hysteresis among emmetropes and high myopes: a pilot study. Curr Eye Res. 2015;40(3):282–289. doi: 10.3109/02713683.2014.922193

[88]

Wong TY, Klein BE, Klein R, et al. Refractive errors, intraocular pressure, and glaucoma in a white population. Ophthalmology. 2003;110(1):211–217. doi: 10.1016/s0161-6420(02)01260-5

[89]

Wong T.Y., Klein B.E., Klein R., et al. Refractive errors, intraocular pressure, and glaucoma in a white population // Ophthalmology. 2003. Vol. 110, N 1. P. 211–217. doi: 10.1016/s0161-6420(02)01260-5

[90]

Wong TY, Klein BE, Klein R, et al. Refractive errors, intraocular pressure, and glaucoma in a white population. Ophthalmology. 2003;110(1):211–217. doi: 10.1016/s0161-6420(02)01260-5

[91]

Samra WA, Pournaras C, Riva C, et al. Choroidal hemodynamic in myopic patients with and without primary open-angle glaucoma. Acta Ophthalmol. 2013;91(4):371–375. doi: 10.1111/j.1755-3768.2012.02386.x

[92]

Samra W.A., Pournaras C., Riva C., et al. Choroidal hemodynamic in myopic patients with and without primary open-angle glaucoma // Acta Ophthalmol. 2013. Vol. 91, N 4. P. 371–375. doi: 10.1111/j.1755-3768.2012.02386.x

[93]

Samra WA, Pournaras C, Riva C, et al. Choroidal hemodynamic in myopic patients with and without primary open-angle glaucoma. Acta Ophthalmol. 2013;91(4):371–375. doi: 10.1111/j.1755-3768.2012.02386.x

[94]

Lin F, Li F, Gao K, et al. Longitudinal changes in macular optical coherence tomography angiography metrics in primary open-angle glaucoma with high myopia: a prospective study. Invest Ophthalmol Vis Sci. 2021;62(1):30. doi: 10.1167/iovs.62.1.30

[95]

Lin F., Li F., Gao K., et al. Longitudinal changes in macular optical coherence tomography angiography metrics in primary open-angle glaucoma with high myopia: a prospective study // Invest Ophthalmol Vis Sci. 2021. Vol. 62, N 1. P. 30. doi: 10.1167/iovs.62.1.30

[96]

Lin F, Li F, Gao K, et al. Longitudinal changes in macular optical coherence tomography angiography metrics in primary open-angle glaucoma with high myopia: a prospective study. Invest Ophthalmol Vis Sci. 2021;62(1):30. doi: 10.1167/iovs.62.1.30

[97]

Suwan Y, Fard MA, Geyman LS, et al. Association of myopia with peripapillary perfused capillary density in patients with glaucoma: an optical coherence tomography angiography study. JAMA Ophthalmol. 2018;136(5):507–513. doi: 10.1001/jamaophthalmol.2018.0776

[98]

Suwan Y., Fard M.A., Geyman L.S., et al. Association of myopia with peripapillary perfused capillary density in patients with glaucoma: an optical coherence tomography angiography study // JAMA Ophthalmol. 2018. Vol. 136, N 5. P. 507–513. doi: 10.1001/jamaophthalmol.2018.0776

[99]

Suwan Y, Fard MA, Geyman LS, et al. Association of myopia with peripapillary perfused capillary density in patients with glaucoma: an optical coherence tomography angiography study. JAMA Ophthalmol. 2018;136(5):507–513. doi: 10.1001/jamaophthalmol.2018.0776

[100]

Na HM, Lee EJ, Lee SH, et al. Evaluation of peripapillary choroidal microvasculature to detect glaucomatous damage in eyes with high myopia. J Glaucoma. 2020;29(1):39–45. doi: 10.1097/IJG.0000000000001408

[101]

Na H.M., Lee E.J., Lee S.H., et al. Evaluation of peripapillary choroidal microvasculature to detect glaucomatous damage in eyes with high myopia // J Glaucoma. 2020. Vol. 29, N 1. P. 39–45. doi: 10.1097/IJG.0000000000001408

[102]

Na HM, Lee EJ, Lee SH, et al. Evaluation of peripapillary choroidal microvasculature to detect glaucomatous damage in eyes with high myopia. J Glaucoma. 2020;29(1):39–45. doi: 10.1097/IJG.0000000000001408

[103]

Shin JW, Kwon J, Lee J, et al. Choroidal microvasculature dropout is not associated with myopia, but is associated with glaucoma. J Glaucoma. 2018;27(2):189–196. doi: 10.1097/IJG.0000000000000859

[104]

Shin J.W., Kwon J., Lee J., et al. Choroidal microvasculature dropout is not associated with myopia, but is associated with glaucoma // J Glaucoma. 2018. Vol. 27, N 2. P. 189–196. doi: 10.1097/IJG.0000000000000859

[105]

Shin JW, Kwon J, Lee J, et al. Choroidal microvasculature dropout is not associated with myopia, but is associated with glaucoma. J Glaucoma. 2018;27(2):189–196. doi: 10.1097/IJG.0000000000000859

[106]

Chakraborty R, Read SA, Collins MJ. Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics. Invest Ophthalmol Vis Sci. 2011;52(8):5121–5129. doi: 10.1167/iovs.11-7364

[107]

Chakraborty R., Read S.A., Collins M.J. Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics // Invest Ophthalmol Vis Sci. 2011. Vol. 52, N 8. P. 5121–5129. doi: 10.1167/iovs.11-7364

[108]

Chakraborty R, Read SA, Collins MJ. Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics. Invest Ophthalmol Vis Sci. 2011;52(8):5121–5129. doi: 10.1167/iovs.11-7364

[109]

Fujiwara T, Imamura Y, Margolis R, et al. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009;148(3):445–450. doi: 10.1016/j.ajo.2009.04.029

[110]

Fujiwara T., Imamura Y., Margolis R., et al. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes // Am J Ophthalmol. 2009. Vol. 148, N 3. P. 445–450. doi: 10.1016/j.ajo.2009.04.029

[111]

Fujiwara T, Imamura Y, Margolis R, et al. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009;148(3):445–450. doi: 10.1016/j.ajo.2009.04.029

[112]

Ho M, Liu DT, Chan VC, et al. Choroidal thickness measurement in myopic eyes by enhanced depth optical coherence tomography. Ophthalmology. 2013;120(9):1909–1914. doi: 10.1016/j.ophtha.2013.02.005

[113]

Ho M., Liu D.T., Chan V.C., et al. Choroidal thickness measurement in myopic eyes by enhanced depth optical coherence tomography // Ophthalmology. 2013. Vol. 120, N 9. P. 1909–1914. doi: 10.1016/j.ophtha.2013.02.005

[114]

Ho M, Liu DT, Chan VC, et al. Choroidal thickness measurement in myopic eyes by enhanced depth optical coherence tomography. Ophthalmology. 2013;120(9):1909–1914. doi: 10.1016/j.ophtha.2013.02.005

[115]

Li XQ, Larsen M, Munch IC. Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students. Invest Ophthalmol Vis Sci. 2011;52(11):8438–8441. doi: 10.1167/iovs.11-8108

[116]

Li X.Q., Larsen M., Munch I.C. Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students // Invest Ophthalmol Vis Sci. 2011. Vol. 52, N 11. P. 8438–8441. doi: 10.1167/iovs.11-8108

[117]

Li XQ, Larsen M, Munch IC. Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students. Invest Ophthalmol Vis Sci. 2011;52(11):8438–8441. doi: 10.1167/iovs.11-8108

[118]

Banitt M. The choroid in glaucoma. Curr Opin Ophthalmol. 2013;24(2):125–129. doi: 10.1097/ICU.0b013e32835d9245

[119]

Banitt M. The choroid in glaucoma // Curr Opin Ophthalmol. 2013. Vol. 24, N 2. P. 125–129. doi: 10.1097/ICU.0b013e32835d9245

[120]

Banitt M. The choroid in glaucoma. Curr Opin Ophthalmol. 2013;24(2):125–129. doi: 10.1097/ICU.0b013e32835d9245

[121]

Hirooka K, Fujiwara A, Shiragami C, et al. Relationship between progression of visual field damage and choroidal thickness in eyes with normal-tension glaucoma. Clin Exp Ophthalmol. 2012;40(6): 576–582. doi: 10.1111/j.1442-9071.2012.02762.x

[122]

Hirooka K., Fujiwara A., Shiragami C., et al. Relationship between progression of visual field damage and choroidal thickness in eyes with normal-tension glaucoma // Clin Exp Ophthalmol. 2012. Vol. 40, N 6. P. 576–582. doi: 10.1111/j.1442-9071.2012.02762.x

[123]

Hirooka K, Fujiwara A, Shiragami C, et al. Relationship between progression of visual field damage and choroidal thickness in eyes with normal-tension glaucoma. Clin Exp Ophthalmol. 2012;40(6): 576–582. doi: 10.1111/j.1442-9071.2012.02762.x

[124]

Hirooka K, Tenkumo K, Fujiwara A, et al. Evaluation of peripapillary choroidal thickness in patients with normal-tension glaucoma. BMC Ophthalmol. 2012;12:29. doi: 10.1186/1471-2415-12-29

[125]

Hirooka K., Tenkumo K., Fujiwara A., et al. Evaluation of peripapillary choroidal thickness in patients with normal-tension glaucoma // BMC Ophthalmol. 2012. Vol. 12. P. 29. doi: 10.1186/1471-2415-12-29

[126]

Hirooka K, Tenkumo K, Fujiwara A, et al. Evaluation of peripapillary choroidal thickness in patients with normal-tension glaucoma. BMC Ophthalmol. 2012;12:29. doi: 10.1186/1471-2415-12-29

[127]

Kurysheva NI, Kiseleva TN, Ardzhevnishvily TD, et al. The choroid and glaucoma: choroidal thickness measurement by means of optical coherence tomography. National Journal Glaucoma. 2013; (3–2):73–82. EDN: RRRAUX

[128]

Курышева Н.И., Киселева Т.Н., Арджевнишвили Т.Д., и др. Хориоидея при глаукоме: результаты исследования методом оптической когерентной томографии // Национальный журнал Глаукома. 2013. № 3–2. С. 73–82. EDN: RRRAUX

[129]

Kurysheva NI, Kiseleva TN, Ardzhevnishvily TD, et al. The choroid and glaucoma: choroidal thickness measurement by means of optical coherence tomography. National Journal Glaucoma. 2013; (3–2):73–82. EDN: RRRAUX

[130]

Usui S, Ikuno Y, Miki A, et al. Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma. Am J Ophthalmol. 2012;153(1):10–16.e1. doi: 10.1016/j.ajo.2011.05.037

[131]

Usui S., Ikuno Y., Miki A., et al. Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma // Am J Ophthalmol. 2012. Vol. 153, N 1. P. 10–16.e1. doi: 10.1016/j.ajo.2011.05.037

[132]

Usui S, Ikuno Y, Miki A, et al. Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma. Am J Ophthalmol. 2012;153(1):10–16.e1. doi: 10.1016/j.ajo.2011.05.037

[133]

Eskina EN, Zykova AV. Early glaucoma risk factors in myopia. Ophthalmology. 2014;11(2):59–63. EDN: SFOWRD46.

[134]

Эскина Э.Н., Зыкова А.В. Ранние критерии риска развития глаукомы у пациентов с близорукостью // Офтальмология. 2014. Т. 11, № 2. С. 59–63. EDN: SFOWRD

[135]

Eskina EN, Zykova AV. Early glaucoma risk factors in myopia. Ophthalmology. 2014;11(2):59–63. EDN: SFOWRD46.

[136]

Mamikonyan VR, Shmeleva-Demir OA, Makashova NV, et al. Volume indicators of ocular hemodynamics in eyes with glaucoma associated with myopia with “normalized” pressure. National Journal Glaucoma. 2015;14(2):14–21. EDN: UBEYQT

[137]

Мамиконян В.Р., Шмелева-Демир О.А., Макашова Н.В., и др. Объемные показатели офтальмогемодинамики при миопии и сопутствующей глаукоме с «нормализованным» давлением // Национальный журнал глаукома. 2015. Т. 14, № 2. С. 14–21. EDN: UBEYQT

[138]

Mamikonyan VR, Shmeleva-Demir OA, Makashova NV, et al. Volume indicators of ocular hemodynamics in eyes with glaucoma associated with myopia with “normalized” pressure. National Journal Glaucoma. 2015;14(2):14–21. EDN: UBEYQT

[139]

Konoplyannik EV, Dravitsa LV. Hemodynamic parameters and peripapillary retinal thickness in patients with primary open-angle glaucoma on the background of myopic refraction and in patients with myopia. Russian Journal of Clinical Ophthalmology. 2012;13(4):121–123. (In Russ.) EDN: PUURCP

[140]

Конопляник Е.В., Дравица Л.В. Параметры гемодинамики и толщина перипапиллярной сетчатки у пациентов с первичной открытоугольной глаукомой на фоне миопической рефракции и у пациентов с миопией // РМЖ Клиническая офтальмология. 2012. Т. 13, № 4. С. 121–123. EDN: PUURCP

[141]

Konoplyannik EV, Dravitsa LV. Hemodynamic parameters and peripapillary retinal thickness in patients with primary open-angle glaucoma on the background of myopic refraction and in patients with myopia. Russian Journal of Clinical Ophthalmology. 2012;13(4):121–123. (In Russ.) EDN: PUURCP

[142]

Aizawa N, Kunikata H, Shiga Y, et al. Correlation between structure/function and optic disc microcirculation in myopic glaucoma, measured with laser speckle flowgraphy. BMC Ophthalmol. 2014;14:113. doi: 10.1186/1471-2415-14-113

[143]

Aizawa N., Kunikata H., Shiga Y., et al. Correlation between structure/function and optic disc microcirculation in myopic glaucoma, measured with laser speckle flowgraphy // BMC Ophthalmol. 2014. Vol. 14. P. 113. doi: 10.1186/1471-2415-14-113

[144]

Aizawa N, Kunikata H, Shiga Y, et al. Correlation between structure/function and optic disc microcirculation in myopic glaucoma, measured with laser speckle flowgraphy. BMC Ophthalmol. 2014;14:113. doi: 10.1186/1471-2415-14-113

[145]

Yokoyama Y, Aizawa N, Chiba N, et al. Significant correlations between optic nerve head microcirculation and visual field defects and nerve fiber layer loss in glaucoma patients with myopic glaucomatous disk. Clin Ophthalmol. 2011;5:1721–1727. doi: 10.2147/OPTH.S23204

[146]

Yokoyama Y., Aizawa N., Chiba N., et al. Significant correlations between optic nerve head microcirculation and visual field defects and nerve fiber layer loss in glaucoma patients with myopic glaucomatous disk // Clin Ophthalmol. 2011. Vol. 5. P. 1721–1727. doi: 10.2147/OPTH.S23204

[147]

Yokoyama Y, Aizawa N, Chiba N, et al. Significant correlations between optic nerve head microcirculation and visual field defects and nerve fiber layer loss in glaucoma patients with myopic glaucomatous disk. Clin Ophthalmol. 2011;5:1721–1727. doi: 10.2147/OPTH.S23204

[148]

Plange N, Remky A, Arend O. Colour Doppler imaging and fluorescein filling defects of the optic disc in normal tension glaucoma. Br J Ophthalmol. 2003;87(6):731–736. doi: 10.1136/bjo.87.6.731

[149]

Plange N., Remky A., Arend O. Colour Doppler imaging and fluorescein filling defects of the optic disc in normal tension glaucoma // Br J Ophthalmol. 2003. Vol. 87, N 6. P. 731–736. doi: 10.1136/bjo.87.6.731

[150]

Plange N, Remky A, Arend O. Colour Doppler imaging and fluorescein filling defects of the optic disc in normal tension glaucoma. Br J Ophthalmol. 2003;87(6):731–736. doi: 10.1136/bjo.87.6.731

[151]

Volkov VV, Sukhinina LB, Ustinova EI. Glaucoma, preglaucoma, ophthalmic hypertension. Leningrad: Meditsina; 1985. 216 p. (In Russ.) EDN: ZDPXEJ

[152]

Волков В.В., Сухинина Л.Б., Устинова Е.И. Глаукома, преглаукома, офтальмогипертензия. Ленинград: Медицина; 1985. 216 c. EDN: ZDPXEJ

[153]

Volkov VV, Sukhinina LB, Ustinova EI. Glaucoma, preglaucoma, ophthalmic hypertension. Leningrad: Meditsina; 1985. 216 p. (In Russ.) EDN: ZDPXEJ

[154]

Tielsch JM, Katz J, Sommer A, et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol. 1995;113(2):216–221. doi: 10.1001/archopht.1995.01100020100038

[155]

Tielsch J.M., Katz J., Sommer A., et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment // Arch Ophthalmol. 1995. Vol. 113, N 2. P. 216–221. doi: 10.1001/archopht.1995.01100020100038

[156]

Tielsch JM, Katz J, Sommer A, et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol. 1995;113(2):216–221. doi: 10.1001/archopht.1995.01100020100038

[157]

Kosior-Jarecka E, Wrobel-Dudzinska D, Lukasik U, et al. Ocular and systemic risk factors of different morphologies of scotoma in patients with normal-tension glaucoma. J Ophthalmol. 2017:1480746. doi: 10.1155/2017/1480746

[158]

Kosior-Jarecka E., Wrobel-Dudzinska D., Lukasik U., et al. Ocular and systemic risk factors of different morphologies of scotoma in patients with normal-tension glaucoma // J Ophthalmol. 2017. P. 1480746. doi: 10.1155/2017/1480746

[159]

Kosior-Jarecka E, Wrobel-Dudzinska D, Lukasik U, et al. Ocular and systemic risk factors of different morphologies of scotoma in patients with normal-tension glaucoma. J Ophthalmol. 2017:1480746. doi: 10.1155/2017/1480746

[160]

Nesterov AP, Aliab’eva Z, Lavrent’ev AV. Normal-pressure glaucoma: a hypothesis of pathogenesis. Russian Annals of Ophthalmology. 2003;119(2):3–6. (In Russ.) EDN: TUDHHD

[161]

Нестеров А.П., Алябьева Ж.Ю., Лаврентьев А.В. Глаукома нормального давления: гипотеза патогенеза // Вестник офтальмологии. 2003. Т. 119, № 2. С. 3–6. EDN: TUDHHD

[162]

Nesterov AP, Aliab’eva Z, Lavrent’ev AV. Normal-pressure glaucoma: a hypothesis of pathogenesis. Russian Annals of Ophthalmology. 2003;119(2):3–6. (In Russ.) EDN: TUDHHD

[163]

Tarasova LN, Grigor’eva EG, Abaimov MA, et al. Certain aspects of normal pressure glaucoma. Russian Annals of Ophthalmology. 2003;119(3):8–11. (In Russ.) EDN: TUDHUP

[164]

Тарасова Л.Н., Григорьева Е.Г., Абаимов М.А., и др. Некоторые аспекты патогенеза глаукомы нормального давления // Вестник офтальмологии. 2003. Т. 119, № 3. С. 8–11. EDN: TUDHUP

[165]

Tarasova LN, Grigor’eva EG, Abaimov MA, et al. Certain aspects of normal pressure glaucoma. Russian Annals of Ophthalmology. 2003;119(3):8–11. (In Russ.) EDN: TUDHUP

[166]

Konieczka K, Erb C. Diseases potentially related to Flammer syndrome. EPMA J. 2017;8(4):327–332. doi: 10.1007/s13167-017-0116-4

[167]

Konieczka K., Erb C. Diseases potentially related to Flammer syndrome // EPMA J. 2017. Vol. 8, N 4. P. 327–332. doi: 10.1007/s13167-017-0116-4

[168]

Konieczka K, Erb C. Diseases potentially related to Flammer syndrome. EPMA J. 2017;8(4):327–332. doi: 10.1007/s13167-017-0116-4

[169]

Konieczka K, Flammer J, Sternbuch J, et al. Leber‘s Hereditary Optic Neuropathy, Normal Tension Glaucoma, and Flammer Syndrome: Long Term Follow-up of a Patient. Klin Monbl Augenheilkd. 2017;234(4):584–587. doi: 10.1055/s-0042-119564

[170]

Konieczka K., Flammer J., Sternbuch J., et al. Lebersche hereditäre Optikusneuropathie, Normaldruckglaukom und Flammer-Syndrom — eine langzeitige Beobachtung eines Patienten // Klin Monbl Augenheilkd. 2017. Vol. 234, N 4. P. 584–587. doi: 10.1055/s-0042-119564

[171]

Konieczka K, Flammer J, Sternbuch J, et al. Leber‘s Hereditary Optic Neuropathy, Normal Tension Glaucoma, and Flammer Syndrome: Long Term Follow-up of a Patient. Klin Monbl Augenheilkd. 2017;234(4):584–587. doi: 10.1055/s-0042-119564

[172]

Kwon J, Lee J, Choi J, et al. Association between nocturnal blood pressure dips and optic disc hemorrhage in patients with normal-tension glaucoma. Am J Ophthalmol. 2017;176:87–101. doi: 10.1016/j.ajo.2017.01.002

[173]

Kwon J., Lee J., Choi J., et al. Association between nocturnal blood pressure dips and optic disc hemorrhage in patients with normal-tension glaucoma // Am J Ophthalmol. 2017. Vol. 176. P. 87–101. doi: 10.1016/j.ajo.2017.01.002

[174]

Kwon J, Lee J, Choi J, et al. Association between nocturnal blood pressure dips and optic disc hemorrhage in patients with normal-tension glaucoma. Am J Ophthalmol. 2017;176:87–101. doi: 10.1016/j.ajo.2017.01.002

[175]

Kim JH, Lee TY, Lee JW, et al. Comparison of the thickness of the lamina cribrosa and vascular factors in early normal-tension glaucoma with low and high intraocular pressures. Korean J Ophthalmol. 2014;28(6):473–478. doi: 10.3341/kjo.2014.28.6.473

[176]

Kim J.H., Lee T.Y., Lee J.W., et al. Comparison of the thickness of the lamina cribrosa and vascular factors in early normal-tension glaucoma with low and high intraocular pressures // Korean J Ophthalmol. 2014. Vol. 28, N 6. P. 473–478. doi: 10.3341/kjo.2014.28.6.473

[177]

Kim JH, Lee TY, Lee JW, et al. Comparison of the thickness of the lamina cribrosa and vascular factors in early normal-tension glaucoma with low and high intraocular pressures. Korean J Ophthalmol. 2014;28(6):473–478. doi: 10.3341/kjo.2014.28.6.473

[178]

Koch EC, Arend KO, Bienert M, et al. Arteriovenous passage times and visual field progression in normal tension glaucoma. Scientific World Journal. 2013;2013:726912. doi: 10.1155/2013/726912

[179]

Koch E.C., Arend K.O., Bienert M., et al. Arteriovenous passage times and visual field progression in normal tension glaucoma // Scientific World Journal. 2013. Vol. 2013. P. 726912. doi: 10.1155/2013/726912

[180]

Koch EC, Arend KO, Bienert M, et al. Arteriovenous passage times and visual field progression in normal tension glaucoma. Scientific World Journal. 2013;2013:726912. doi: 10.1155/2013/726912

[181]

Plange N, Kaup M, Remky A, et al. Prolonged retinal arteriovenous passage time is correlated to ocular perfusion pressure in normal tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2008;246(8):1147–1152. doi: 10.1007/s00417-008-0807-6

[182]

Plange N., Kaup M., Remky A., et al. Prolonged retinal arteriovenous passage time is correlated to ocular perfusion pressure in normal tension glaucoma // Graefes Arch Clin Exp Ophthalmol. 2008. Vol. 246, N 8. P. 1147–1152. doi: 10.1007/s00417-008-0807-6

[183]

Plange N, Kaup M, Remky A, et al. Prolonged retinal arteriovenous passage time is correlated to ocular perfusion pressure in normal tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2008;246(8):1147–1152. doi: 10.1007/s00417-008-0807-6

[184]

Duijm HF, van den Berg TJ, Greve EL. A comparison of retinal and choroidal hemodynamics in patients with primary open-angle glaucoma and normal-pressure gaucoma. Am J Ophthalmol. 1997;123(5):644–656. doi: 10.1016/s0002-9394(14)71077-3

[185]

Duijm H.F., van den Berg T.J., Greve E.L. A comparison of retinal and choroidal hemodynamics in patients with primary open-angle glaucoma and normal-pressure gaucoma // Am J Ophthalmol. 1997. Vol. 123, N 5. P. 644–656. doi: 10.1016/s0002-9394(14)71077-3

[186]

Duijm HF, van den Berg TJ, Greve EL. A comparison of retinal and choroidal hemodynamics in patients with primary open-angle glaucoma and normal-pressure gaucoma. Am J Ophthalmol. 1997;123(5):644–656. doi: 10.1016/s0002-9394(14)71077-3

[187]

Butt Z, O’Brien C, McKillop G, et al. Color Doppler imaging in untreated high- and normal-pressure open-angle glaucoma. Invest Ophthalmol Vis Sci. 1997;38(3):690–696.

[188]

Butt Z., O’Brien C., McKillop G., et al. Color Doppler imaging in untreated high- and normal-pressure open-angle glaucoma // Invest Ophthalmol Vis Sci. 1997. Vol. 38, N 3. P. 690–696.

[189]

Butt Z, O’Brien C, McKillop G, et al. Color Doppler imaging in untreated high- and normal-pressure open-angle glaucoma. Invest Ophthalmol Vis Sci. 1997;38(3):690–696.

[190]

Galassi F, Sodi A, Ucci F, et al. Ocular hemodynamics and glaucoma prognosis: a color Doppler imaging study. Arch Ophthalmol. 2003;121(12):1711–1715. doi: 10.1001/archopht.121.12.1711

[191]

Galassi F., Sodi A., Ucci F., et al. Ocular hemodynamics and glaucoma prognosis: a color Doppler imaging study // Arch Ophthalmol. 2003. Vol. 121, N 12. P. 1711–1715. doi: 10.1001/archopht.121.12.1711

[192]

Galassi F, Sodi A, Ucci F, et al. Ocular hemodynamics and glaucoma prognosis: a color Doppler imaging study. Arch Ophthalmol. 2003;121(12):1711–1715. doi: 10.1001/archopht.121.12.1711

[193]

Martinez A, Sanchez M. Ocular blood flow and glaucoma. Br J Ophthalmol. 2008;92(9):1301.

[194]

Martinez A., Sanchez M. Ocular blood flow and glaucoma // Br J Ophthalmol. 2008. Vol. 92, N 9. P. 1301.

[195]

Martinez A, Sanchez M. Ocular blood flow and glaucoma. Br J Ophthalmol. 2008;92(9):1301.

[196]

Martinez A, Sanchez M. Ocular haemodynamics in pseudoexfoliative and primary open-angle glaucoma. Eye (Lond). 2008;22(4): 515–520. doi: 10.1038/sj.eye.6702676

[197]

Martinez A., Sanchez M. Ocular haemodynamics in pseudoexfoliative and primary open-angle glaucoma // Eye (Lond). 2008. Vol. 22, N 4. P. 515–520. doi: 10.1038/sj.eye.6702676

[198]

Martinez A, Sanchez M. Ocular haemodynamics in pseudoexfoliative and primary open-angle glaucoma. Eye (Lond). 2008;22(4): 515–520. doi: 10.1038/sj.eye.6702676

[199]

Yamazaki Y, Drance SM. The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma. Am J Ophthalmol. 1997;124(3):287–295. doi: 10.1016/s0002–9394(14)70820-7

[200]

Yamazaki Y., Drance S.M. The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma // Am J Ophthalmol. 1997. Vol. 124, N 3. P. 287–295. doi: 10.1016/s0002-9394(14)70820-7

[201]

Yamazaki Y, Drance SM. The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma. Am J Ophthalmol. 1997;124(3):287–295. doi: 10.1016/s0002–9394(14)70820-7

[202]

Ong K, Farinelli A, Billson F, et al. Comparative study of brain magnetic resonance imaging findings in patients with low-tension glaucoma and control subjects. Ophthalmology. 1995;102(11): 1632–1638. doi: 10.1016/s0161-6420(95)30816-0

[203]

Ong K., Farinelli A., Billson F., et al. Comparative study of brain magnetic resonance imaging findings in patients with low-tension glaucoma and control subjects // Ophthalmology. 1995. Vol. 102, N 11. P. 1632–1638. doi: 10.1016/s0161-6420(95)30816-0

[204]

Ong K, Farinelli A, Billson F, et al. Comparative study of brain magnetic resonance imaging findings in patients with low-tension glaucoma and control subjects. Ophthalmology. 1995;102(11): 1632–1638. doi: 10.1016/s0161-6420(95)30816-0

[205]

Stroman GA, Stewart WC, Golnik KC, et al. Magnetic resonance imaging in patients with low-tension glaucoma. Arch Ophthalmol. 1995;113(2):168–172. doi: 10.1001/archopht.1995.01100020050027

[206]

Stroman G.A., Stewart W.C., Golnik K.C., et al. Magnetic resonance imaging in patients with low-tension glaucoma // Arch Ophthalmol. 1995. Vol. 113, N 2. P. 168–172. doi: 10.1001/archopht.1995.01100020050027

[207]

Stroman GA, Stewart WC, Golnik KC, et al. Magnetic resonance imaging in patients with low-tension glaucoma. Arch Ophthalmol. 1995;113(2):168–172. doi: 10.1001/archopht.1995.01100020050027

[208]

Yuksel N, Anik Y, Altintas O, et al. Magnetic resonance imaging of the brain in patients with pseudoexfoliation syndrome and glaucoma. Ophthalmologica. 2006;220(2):125–130. doi: 10.1159/000090578

[209]

Yuksel N., Anik Y., Altintas O., et al. Magnetic resonance imaging of the brain in patients with pseudoexfoliation syndrome and glaucoma // Ophthalmologica. 2006. Vol. 220, N 2. P. 125–130. doi: 10.1159/000090578

[210]

Yuksel N, Anik Y, Altintas O, et al. Magnetic resonance imaging of the brain in patients with pseudoexfoliation syndrome and glaucoma. Ophthalmologica. 2006;220(2):125–130. doi: 10.1159/000090578

[211]

Suzuki J, Tomidokoro A, Araie M, et al. Visual field damage in normal-tension glaucoma patients with or without ischemic changes in cerebral magnetic resonance imaging. Jpn J Ophthalmol. 2004;48(4):340–344. doi: 10.1007/s10384-004-0072-0

[212]

Suzuki J., Tomidokoro A., Araie M., et al. Visual field damage in normal-tension glaucoma patients with or without ischemic changes in cerebral magnetic resonance imaging // Jpn J Ophthalmol. 2004. Vol. 48, N 4. P. 340–344. doi: 10.1007/s10384-004-0072-0

[213]

Suzuki J, Tomidokoro A, Araie M, et al. Visual field damage in normal-tension glaucoma patients with or without ischemic changes in cerebral magnetic resonance imaging. Jpn J Ophthalmol. 2004;48(4):340–344. doi: 10.1007/s10384-004-0072-0

[214]

Shiga Y, Omodaka K, Kunikata H, et al. Waveform analysis of ocular blood flow and the early detection of normal tension glaucoma. Invest Ophthalmol Vis Sci. 2013;54(12):7699–706. doi: 10.1167/iovs.13-12930

[215]

Shiga Y., Omodaka K., Kunikata H., et al. Waveform analysis of ocular blood flow and the early detection of normal tension glaucoma // Invest Ophthalmol Vis Sci. 2013. Vol. 54, N 12. P. 7699–706. doi: 10.1167/iovs.13-12930

[216]

Shiga Y, Omodaka K, Kunikata H, et al. Waveform analysis of ocular blood flow and the early detection of normal tension glaucoma. Invest Ophthalmol Vis Sci. 2013;54(12):7699–706. doi: 10.1167/iovs.13-12930

[217]

Mursch-Edlmayr AS, Luft N, Podkowinski D, et al. Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study. Sci Rep. 2018;8(1):5343. doi: 10.1038/s41598-018-23149-0

[218]

Mursch-Edlmayr A.S., Luft N., Podkowinski D., et al. Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study // Sci Rep. 2018. Vol. 8, N 1. P. 5343. doi: 10.1038/s41598-018-23149-0

[219]

Mursch-Edlmayr AS, Luft N, Podkowinski D, et al. Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study. Sci Rep. 2018;8(1):5343. doi: 10.1038/s41598-018-23149-0

[220]

Takeyama A, Ishida K, Anraku A, et al. Comparison of optical coherence tomography angiography and laser speckle flowgraphy for the diagnosis of normal-tension glaucoma. J Ophthalmol. 2018;2018:1751857. doi: 10.1155/2018/1751857

[221]

Takeyama A., Ishida K., Anraku A., et al. Comparison of optical coherence tomography angiography and laser speckle flowgraphy for the diagnosis of normal-tension glaucoma // J Ophthalmol. 2018. Vol. 2018. P. 1751857. doi: 10.1155/2018/1751857

[222]

Takeyama A, Ishida K, Anraku A, et al. Comparison of optical coherence tomography angiography and laser speckle flowgraphy for the diagnosis of normal-tension glaucoma. J Ophthalmol. 2018;2018:1751857. doi: 10.1155/2018/1751857

[223]

Leeman M, Kestelyn P. Glaucoma and blood pressure. Hypertension. 2019;73(5):944–950. doi: 10.1161/HYPERTENSIONAHA.118.11507

[224]

Leeman M., Kestelyn P. Glaucoma and blood pressure hypertension. 2019. Vol. 73, N 5. P. 944–950. doi: 10.1161/HYPERTENSIONAHA.118.11507

[225]

Leeman M, Kestelyn P. Glaucoma and blood pressure. Hypertension. 2019;73(5):944–950. doi: 10.1161/HYPERTENSIONAHA.118.11507

[226]

Yilmaz KC, Sur Gungor S, Ciftci O, et al. Relationship between primary open angle glaucoma and blood pressure. Acta Cardiol. 2020;75(1):54–58. doi: 10.1080/00015385.2018.1549004

[227]

Yilmaz K.C., Sur Gungor S., Ciftci O., et al. Relationship between primary open angle glaucoma and blood pressure // Acta Cardiol. 2020. Vol. 75, N 1. P. 54–58. doi: 10.1080/00015385.2018.1549004

[228]

Yilmaz KC, Sur Gungor S, Ciftci O, et al. Relationship between primary open angle glaucoma and blood pressure. Acta Cardiol. 2020;75(1):54–58. doi: 10.1080/00015385.2018.1549004

[229]

Yoshikawa T, Obayashi K, Miyata K, et al. Increased nighttime blood pressure in patients with glaucoma: cross-sectional analysis of the LIGHT study. Ophthalmology. 2019;126(10):1366–1371. doi: 10.1016/j.ophtha.2019.05.019

[230]

Yoshikawa T., Obayashi K., Miyata K., et al. Increased nighttime blood pressure in patients with glaucoma: cross-sectional analysis of the LIGHT study // Ophthalmology. 2019. Vol. 126, N 10. P. 1366–1371. doi: 10.1016/j.ophtha.2019.05.019

[231]

Yoshikawa T, Obayashi K, Miyata K, et al. Increased nighttime blood pressure in patients with glaucoma: cross-sectional analysis of the LIGHT study. Ophthalmology. 2019;126(10):1366–1371. doi: 10.1016/j.ophtha.2019.05.019

[232]

Skrzypecki J, Ufnal M, Szaflik JP, et al. Blood pressure and glaucoma: at the crossroads between cardiology and ophthalmology. Cardiol J. 2019;26(1):8–12. doi: 10.5603/CJ.2019.0008

[233]

Skrzypecki J., Ufnal M., Szaflik J.P., et al. Blood pressure and glaucoma: at the crossroads between cardiology and ophthalmology // Cardiol J. 2019. Vol. 26, N 1. P. 8–12. doi: 10.5603/CJ.2019.0008

[234]

Skrzypecki J, Ufnal M, Szaflik JP, et al. Blood pressure and glaucoma: at the crossroads between cardiology and ophthalmology. Cardiol J. 2019;26(1):8–12. doi: 10.5603/CJ.2019.0008

[235]

Holappa M, Vapaatalo H, Vaajanen A. Many faces of renin-angiotensin system — focus on eye. Open Ophthalmol J. 2017;11:122–142. doi: 10.2174/1874364101711010122

[236]

Holappa M., Vapaatalo H., Vaajanen A. Many faces of renin-angiotensin system — focus on eye // Open Ophthalmol J. 2017. Vol. 11. P. 122–142. doi: 10.2174/1874364101711010122

[237]

Holappa M, Vapaatalo H, Vaajanen A. Many faces of renin-angiotensin system — focus on eye. Open Ophthalmol J. 2017;11:122–142. doi: 10.2174/1874364101711010122

[238]

Grzybowski A, Och M, Kanclerz P, et al. Primary open angle glaucoma and vascular risk factors: a review of population based studies from 1990 to 2019. J Clin Med. 2020;9(3):761. doi: 10.3390/jcm9030761

[239]

Grzybowski A., Och M., Kanclerz P., et al. Primary open angle glaucoma and vascular risk factors: a review of population based studies from 1990 to 2019 // J Clin Med. 2020. Vol. 9, N 3. P. 761. doi: 10.3390/jcm9030761

[240]

Grzybowski A, Och M, Kanclerz P, et al. Primary open angle glaucoma and vascular risk factors: a review of population based studies from 1990 to 2019. J Clin Med. 2020;9(3):761. doi: 10.3390/jcm9030761

[241]

Gangwani RA, Lee JWY, Mo HY, et al. The correlation of retinal nerve fiber layer thickness with blood pressure in a chinese hypertensive population. Medicine (Baltimore). 2015;94(23):e947. doi: 10.1097/MD.0000000000000947

[242]

Gangwani R.A., Lee J.W.Y., Mo H.Y., et al. The correlation of retinal nerve fiber layer thickness with blood pressure in a chinese hypertensive population // Medicine (Baltimore). 2015. Vol. 94, N 23. P. e947. doi: 10.1097/MD.0000000000000947

[243]

Gangwani RA, Lee JWY, Mo HY, et al. The correlation of retinal nerve fiber layer thickness with blood pressure in a chinese hypertensive population. Medicine (Baltimore). 2015;94(23):e947. doi: 10.1097/MD.0000000000000947

[244]

Bowe A, Grunig M, Schubert J, et al. Circadian variation in arterial blood pressure and glaucomatous optic neuropathya systematic review and meta-analysis. Am J Hypertens. 2015;28(9):1077–1082. doi: 10.1093/ajh/hpv016

[245]

Bowe A., Grunig M., Schubert J., et al. Circadian variation in arterial blood pressure and glaucomatous optic neuropathya systematic review and meta-analysis // Am J Hypertens. 2015. Vol. 28, N 9. P. 1077–1082. doi: 10.1093/ajh/hpv016

[246]

Bowe A, Grunig M, Schubert J, et al. Circadian variation in arterial blood pressure and glaucomatous optic neuropathya systematic review and meta-analysis. Am J Hypertens. 2015;28(9):1077–1082. doi: 10.1093/ajh/hpv016

[247]

Jammal AA, Berchuck SI, Mariottoni EB, et al. Blood pressure and glaucomatous progression in a large clinical population. Ophthalmology. 2022;129(2):161–170. doi: 10.1016/j.ophtha.2021.08.021

[248]

Jammal A.A., Berchuck S.I., Mariottoni E.B., et al. Blood pressure and glaucomatous progression in a large clinical population // Ophthalmology. 2022. Vol. 129, N 2. P. 161–170. doi: 10.1016/j.ophtha.2021.08.021

[249]

Jammal AA, Berchuck SI, Mariottoni EB, et al. Blood pressure and glaucomatous progression in a large clinical population. Ophthalmology. 2022;129(2):161–170. doi: 10.1016/j.ophtha.2021.08.021

[250]

Melgarejo JD, Lee JH, Petitto M, et al. Glaucomatous optic neuropathy associated with nocturnal dip in blood pressure: findings from the Maracaibo aging study. Ophthalmology. 2018;125(6): 807–814. doi: 10.1016/j.ophtha.2017.11.029

[251]

Melgarejo J.D., Lee J.H., Petitto M., et al. Glaucomatous optic neuropathy associated with nocturnal dip in blood pressure: findings from the Maracaibo aging study // Ophthalmology. 2018. Vol. 125, N 6. P. 807–814. doi: 10.1016/j.ophtha.2017.11.029

[252]

Melgarejo JD, Lee JH, Petitto M, et al. Glaucomatous optic neuropathy associated with nocturnal dip in blood pressure: findings from the Maracaibo aging study. Ophthalmology. 2018;125(6): 807–814. doi: 10.1016/j.ophtha.2017.11.029

[253]

Raman P, Suliman NB, Zahari M, et al. Low nocturnal diastolic ocular perfusion pressure as a risk factor for NTG progression: a 5-year prospective study. Eye (Lond). 2018;32(7):1183–1189. doi: 10.1038/s41433-018-0057-8

[254]

Raman P., Suliman N.B., Zahari M., et al. Low nocturnal diastolic ocular perfusion pressure as a risk factor for NTG progression: a 5-year prospective study // Eye (Lond). 2018. Vol. 32, N 7. P. 1183–1189. doi: 10.1038/s41433-018-0057-8

[255]

Raman P, Suliman NB, Zahari M, et al. Low nocturnal diastolic ocular perfusion pressure as a risk factor for NTG progression: a 5-year prospective study. Eye (Lond). 2018;32(7):1183–1189. doi: 10.1038/s41433-018-0057-8

[256]

Pillunat KR, Spoerl E, Jasper C, et al. Nocturnal blood pressure in primary open-angle glaucoma. Acta Ophthalmol. 2015;93(8): e621–e626. doi: 10.1111/aos.12740

[257]

Pillunat K.R., Spoerl E., Jasper C., et al. Nocturnal blood pressure in primary open-angle glaucoma // Acta Ophthalmol. 2015. Vol. 93, N 8. P. e621–e626. doi: 10.1111/aos.12740

[258]

Pillunat KR, Spoerl E, Jasper C, et al. Nocturnal blood pressure in primary open-angle glaucoma. Acta Ophthalmol. 2015;93(8): e621–e626. doi: 10.1111/aos.12740

[259]

Lee K, Yang H, Kim JY, et al. Risk factors associated with structural progression in normal-tension glaucoma: intraocular pressure, systemic blood pressure, and myopia. Invest Ophthalmol Vis Sci. 2020;61(8):35. doi: 10.1167/iovs.61.8.35

[260]

Lee K., Yang H., Kim J.Y., et al. Risk factors associated with structural progression in normal-tension glaucoma: intraocular pressure, systemic blood pressure, and myopia // Invest Ophthalmol Vis Sci. 2020. Vol. 61, N 8. P. 35. doi: 10.1167/iovs.61.8.35

[261]

Lee K, Yang H, Kim JY, et al. Risk factors associated with structural progression in normal-tension glaucoma: intraocular pressure, systemic blood pressure, and myopia. Invest Ophthalmol Vis Sci. 2020;61(8):35. doi: 10.1167/iovs.61.8.35

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1497KB)

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/