Eye microcirculation in glaucoma. Part 1. Diagnostic methods

Sergey Yu. Petrov , Tatiana N. Kiseleva , Tatiana D. Okhotsimskaya , Oksana I. Markelova

Ophthalmology Reports ›› 2024, Vol. 17 ›› Issue (3) : 113 -123.

PDF (1955KB)
Ophthalmology Reports ›› 2024, Vol. 17 ›› Issue (3) : 113 -123. DOI: 10.17816/OV628995
Reviews
review-article

Eye microcirculation in glaucoma. Part 1. Diagnostic methods

Author information +
History +
PDF (1955KB)

Abstract

Glaucoma is a socially significant disease, which is a wide group of polyetiological diseases. In the etiology of primary glaucoma, in addition to the mechanical theory, a vascular mechanism is also distinguished, and therefore, the search and development of the most informative and accurate method for studying ocular blood flow continues. Existing methods are divided into invasive and non-invasive. Invasive methods include angiography with intravenous fluorescein and indocyanine. Non-invasive methods include ultrasound Doppler mapping and pulsed Doppler modes, optical coherence tomography with angiography and laser speckle flowography. The review presents data on modern methods for ocular hemodynamics in glaucoma and ocular hypertension with technologies for studying retrobulbar blood flow and intraocular hemocirculation.

Keywords

glaucoma / microcirculation / blood flow / angiography / optical coherence tomography / laser speckle flowgraphy

Cite this article

Download citation ▾
Sergey Yu. Petrov, Tatiana N. Kiseleva, Tatiana D. Okhotsimskaya, Oksana I. Markelova. Eye microcirculation in glaucoma. Part 1. Diagnostic methods. Ophthalmology Reports, 2024, 17(3): 113-123 DOI:10.17816/OV628995

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–267. doi: 10.1136/bjo.2005.081224

[2]

Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020 // Br J Ophthalmol. 2006. Vol. 90, N 3. P. 262–267. doi: 10.1136/bjo.2005.081224

[3]

Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090. doi: 10.1016/j.ophtha.2014.05.013

[4]

Tham Y.C., Li X., Wong T.Y., et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis // Ophthalmology. 2014. Vol. 121, N 11. P. 2081–2090. doi: 10.1016/j.ophtha.2014.05.013

[5]

Neroev VV, Kiseleva OA, Bessmertny AM. The main results of a multicenter study of epidemiological features of primary open-angle glaucoma in the Russian Federation. Russian Ophthalmological Journal. 2013;6(3):4–7. EDN: QIWMDX

[6]

Нероев В.В., Киселева О.А., Бессмертный А.М. Основные результаты мультицентрового исследования эпидемиологических особенностей первичной открытоугольной глаукомы в Российской Федерации // Российский офтальмологический журнал. 2013. Т. 6, № 3. С. 4–7. EDN: QIWMDX

[7]

Sotimehin AE, Ramulu PY. Measuring disability in glaucoma. J Glaucoma. 2018;27(11):939–949. doi: 10.1097/IJG.0000000000001068

[8]

Sotimehin A.E., Ramulu P.Y. Measuring disability in glaucoma // J Glaucoma. 2018. Vol. 27, N 11. P. 939–949. doi: 10.1097/IJG.0000000000001068

[9]

Clinical Gidelines “Primary open angle glaucoma”. 2020 (16.02.2021). Approved by the Ministry of Health of the Russian Federation [cited 2024, March 09]. Available from: http://avo-portal.ru/documents/fkr/Klinicheskie_rekomendacii_POUG_2022.pdf. (In Russ.)

[10]

Клинические рекомендации «Глаукома первичная открытоугольная» 2020 (16.02.2021). Утверждены Минздравом РФ. Режим доступа: http://avo-portal.ru/documents/fkr/Klinicheskie_rekomendacii_POUG_2022.pdf. Дата обращения: 09.03.2024.

[11]

Flammer J, Orgul S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359–393. doi: 10.1016/s1350-9462(02)00008-3

[12]

Flammer J., Orgul S., Costa V.P., et al. The impact of ocular blood flow in glaucoma // Prog Retin Eye Res. 2002. Vol. 21, N 4. P. 359–393. doi: 10.1016/s1350-9462(02)00008-3

[13]

Hayreh SS. Ishemic optic neuropathies. Springer Berlin: Heidelberg; 2011. 456 p.

[14]

Hayreh S.S. Ishemic optic neuropathies. Springer Berlin: Heidelberg, 2011. 456 p.

[15]

Kurysheva NI. Vascular theory of the glaucomatous optic neuropathy pathogenesis: rationale in terms of ocular blood flow anatomy and physiology. Part 1. National Journal Glaucoma. 2017;16(3): 90–97. (In Russ.) EDN: ZIOXEP

[16]

Курышева Н.И. Сосудистая теория патогенеза глаукомной оптиконейропатии: обоснование с позиций анатомии и физиологии глазного кровотока. Часть 1 // Национальный журнал глаукома. 2017. Т. 16, № 3. С. 90–97. EDN: ZIOXEP

[17]

Neroev BB, Kiselevа TN. Ultrasound in Ophthalmology: A Guide for Physicians. Moscow: IKAR; 2019. 324 p. (In Russ.) EDN: FZIZZY

[18]

Нероев B.B., Киселевa Т.Н. Ультразвуковые исследования в офтальмологии: руководство для врачей. 1-е изд. Москва: ИКАР. 2019. 324 c. EDN: FZIZZY

[19]

Morgan WH, Lind CR, Kain S, et al. Retinal vein pulsation is in phase with intracranial pressure and not intraocular pressure. Invest Ophthalmol Vis Sci. 2012;53(8):4676–4681. doi: 10.1167/iovs.12-9837

[20]

Morgan W.H., Lind C.R., Kain S., et al. Retinal vein pulsation is in phase with intracranial pressure and not intraocular pressure // Invest Ophthalmol Vis Sci. 2012. Vol. 53, N 8. P. 4676–4681. doi: 10.1167/iovs.12-9837

[21]

Caprioli J, Coleman AL. Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol. 2010;149(5):704–712. doi: 10.1016/j.ajo.2010.01.018

[22]

Caprioli J., Coleman A.L. Blood pressure, perfusion pressure, and glaucoma // Am J Ophthalmol. 2010. Vol. 149, N 5. P. 704–712. doi: 10.1016/j.ajo.2010.01.018

[23]

Kurisheva NI. Ocular perfusion pressure and primary vascular dysregulation in normal tension glaucoma. National Journal Glaucoma. 2011;(3):11–17. EDN: RUHKYB

[24]

Курышева Н.И. Глазное перфузионное давление и первичная сосудистая дисрегуляция у больных глаукомой нормального давления // Национальный журнал Глаукома. 2011. № 3. С. 11–17. EDN: RUHKYB

[25]

Kurysheva NI. Vascular theory of the glaucomatous optic neuropathy pathogenesis: physiological and pathophysiological rationale. PART 2. Glaucoma. 2017;16(4):98–109. EDN: ZWZTYT

[26]

Курышева Н.И. Сосудистая теория патогенеза глаукомной оптиконейропатии: физиологическое и патофизиологическое обоснование. Часть 2 // Глаукома. 2017. Т. 16, № 4. С. 98–109. EDN: ZWZTYT

[27]

Tielsch JM, Katz J, Sommer A, et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol. 1995;113(2):216–221. doi: 10.1001/archopht.1995.01100020100038

[28]

Tielsch J.M., Katz J., Sommer A., et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment // Arch Ophthalmol. 1995. Vol. 113, N 2. P. 216–221. doi: 10.1001/archopht.1995.01100020100038

[29]

Leske MC. Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. Curr Opin Ophthalmol. 2009;20(2):73–78. doi: 10.1097/ICU.0b013e32831eef82

[30]

Leske M.C. Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings // Curr Opin Ophthalmol. 2009. Vol. 20, N 2. P. 73–78. doi: 10.1097/ICU.0b013e32831eef82

[31]

Gherghel D, Orgul S, Gugleta K, et al. Relationship between ocular perfusion pressure and retrobulbar blood flow in patients with glaucoma with progressive damage. Am J Ophthalmol. 2000;130(5): 597–605. doi: 10.1016/s0002-9394(00)00766-2

[32]

Gherghel D., Orgul S., Gugleta K., et al. Relationship between ocular perfusion pressure and retrobulbar blood flow in patients with glaucoma with progressive damage // Am J Ophthalmol. 2000. Vol. 130, N 5. P. 597–605. doi: 10.1016/s0002-9394(00)00766-2

[33]

Kiseleva TN, Kotelin VI, Losanova OA, et al. Noninvasive methods assessment blood flow in anterior segment and clinical application perspective. Ophthalmology. 2017;14(4):283–290. EDN: URSAXZ doi: 10.18008/1816-5095-2017-4-283-290

[34]

Киселева Т.Н., Котелин В.И., Лосанова О.А., et al. Неинвазивные методы оценки гемодинамики переднего сегмента глаза: перспективы применения в клинической практике // Офтальмология. 2017. Т. 14, № 4. С. 283–290. EDN: URSAXZ doi: 10.18008/1816-5095-2017-4-283-290

[35]

Kotliar KE, Drozdova GA, Shamshinova A.M. Ocular hemodynamics and contemporary methods of its assessment. Part III. Non-invasive methods of assessment of ocular blood flow. 2. Static and dynamic assessment of retinal vessel reaction to stimuli. Glaucoma. 2007;(2):64–71. EDN: KWEXCN

[36]

Котляр К.Е., Дроздова Г.А., Шамшинова A.M. Гемодинамика глаза и современные методы ее исследования. Часть III. Неинвазивные методы исследования кровообращения глаза. 2. Статические и динамические методы измерения состояния и реакции сосудов сетчатки на стимулы // Глаукома. 2007. Т. 2. С. 64–71. EDN: KWEXCN

[37]

Invernizzi A, Pellegrini M, Cornish E, et al. Imaging the choroid: from indocyanine green angiography to optical coherence tomography angiography. Asia Pac J Ophthalmol (Phila). 2020;9(4):335–348. doi: 10.1097/APO.0000000000000307

[38]

Invernizzi A., Pellegrini M., Cornish E., et al. Imaging the choroid: from indocyanine green angiography to optical coherence tomography angiography // Asia Pac J Ophthalmol (Phila). 2020. Vol. 9, N 4. P. 335–348. doi: 10.1097/APO.0000000000000307

[39]

Francois J, de Laey JJ. Fluorescein angiography of the glaucomatous disc. Ophthalmologica. 1974;168(4):288–298. doi: 10.1159/000307051

[40]

Francois J., de Laey J.J. Fluorescein angiography of the glaucomatous disc // Ophthalmologica. 1974. Vol. 168, N 4. P. 288–298. doi: 10.1159/000307051

[41]

Hitchings RA, Spaeth GL. Fluorescein angiography in chronic simple and low-tension glaucoma. Br J Ophthalmol. 1977;61(2): 126–132. doi: 10.1136/bjo.61.2.126

[42]

Hitchings R.A., Spaeth G.L. Fluorescein angiography in chronic simple and low-tension glaucoma // Br J Ophthalmol. 1977. Vol. 61, N 2. P. 126–132. doi: 10.1136/bjo.61.2.126

[43]

Talusan E, Schwartz B. Specificity of fluorescein angiographic defects of the optic disc in glaucoma. Arch Ophthalmol. 1977;95(12):2166–2175. doi: 10.1001/archopht.1977.04450120072006

[44]

Talusan E., Schwartz B. Specificity of fluorescein angiographic defects of the optic disc in glaucoma // Arch Ophthalmol. 1977. Vol. 95, N 12. P. 2166–2175. doi: 10.1001/archopht.1977.04450120072006

[45]

Tsukahara S, Nagataki S, Sugaya M, et al. Visual field defects, cup-disc ratio and fluorescein angiography in glaucomatous optic atrophy. Adv Ophthalmol. 1978;(35):73–93.

[46]

Tsukahara S., Nagataki S., Sugaya M., et al. Visual field defects, cup-disc ratio and fluorescein angiography in glaucomatous optic atrophy // Adv Ophthalmol. 1978. Vol. 35. P. 73–93.

[47]

Lee EJ, Lee KM, Lee SH, et al. Parapapillary choroidal microvasculature dropout in glaucoma: a comparison between optical coherence tomography angiography and indocyanine green angiography. Ophthalmology. 2017;124(8):1209–1217. doi: 10.1016/j.ophtha.2017.03.039

[48]

Lee E.J., Lee K.M., Lee S.H., et al. Parapapillary choroidal microvasculature dropout in glaucoma: a comparison between optical coherence tomography angiography and indocyanine green angiography // Ophthalmology. 2017. Vol. 124, N 8. P. 1209–1217. doi: 10.1016/j.ophtha.2017.03.039

[49]

O’Brart DP, de Souza Lima M, Bartsch DU, et al. Indocyanine green angiography of the peripapillary region in glaucomatous eyes by confocal scanning laser ophthalmoscopy. Am J Ophthalmol. 1997;123(5):657–666. doi: 10.1016/s0002-9394(14)71078-5

[50]

O’Brart D.P., de Souza Lima M., Bartsch D.U., et al. Indocyanine green angiography of the peripapillary region in glaucomatous eyes by confocal scanning laser ophthalmoscopy // Am J Ophthalmol. 1997. Vol. 123, N 5. P. 657–666. doi: 10.1016/s0002-9394(14)71078-5

[51]

Arend O, Plange N, Sponsel WE, et al. Pathogenetic aspects of the glaucomatous optic neuropathy: fluorescein angiographic findings in patients with primary open angle glaucoma. Brain Res Bull. 2004;62(6):517–524. doi: 10.1016/j.brainresbull.2003.07.008

[52]

Arend O., Plange N., Sponsel W.E., et al. Pathogenetic aspects of the glaucomatous optic neuropathy: fluorescein angiographic findings in patients with primary open angle glaucoma // Brain Res Bull. 2004. Vol. 62, N 6. P. 517–524. doi: 10.1016/j.brainresbull.2003.07.008

[53]

Maram J, Srinivas S, Sadda SR. Evaluating ocular blood flow. Indian J Ophthalmol. 2017;65(5):337–346. doi: 10.4103/ijo.IJO_330_17

[54]

Maram J., Srinivas S., Sadda S.R. Evaluating ocular blood flow // Indian J Ophthalmol. 2017. Vol. 65, N 5. P. 337–346. doi: 10.4103/ijo.IJO_330_17

[55]

Kiseleva TN, Zaitsev MS, Ramazanova KA, et al. Possibilities of color duplex imaging in the diagnosis of ocular vascular pathology. Russian Ophthalmological Journal. 2018;11(3):84–94. EDN: UWAROQ doi: 10.21516/2072-0076-2018-11-3-84-94

[56]

Киселева Т.Н., Зайцев М.С., Рамазанова К.А., и др. Возможности цветового дуплексного сканирования в диагностике сосудистой патологии глаза // Российский офтальмологический журнал. 2018. Т. 11, № 3. С. 84–94. EDN: UWAROQ doi: 10.21516/2072-0076-2018-11-3-84-94

[57]

Magureanu M, Stanila A, Bunescu LV, et al. Color Doppler imaging of the retrobulbar circulation in progressive glaucoma optic neuropathy. Rom J Ophthalmol. 2016;60(4):237–248.

[58]

Magureanu M., Stanila A., Bunescu L.V., et al. Color Doppler imaging of the retrobulbar circulation in progressive glaucoma optic neuropathy // Rom J Ophthalmol. 2016. Vol. 60, N 4. P. 237–248.

[59]

Madhpuriya G, Gokhale S, Agrawal A, et al. Evaluation of hemodynamic changes in retrobulbar blood vessels using color doppler imaging in diabetic patients. Life (Basel). 2022;12(5):629. doi: 10.3390/life12050629

[60]

Madhpuriya G., Gokhale S., Agrawal A., et al. Evaluation of hemodynamic changes in retrobulbar blood vessels using color Doppler imaging in diabetic patients // Life (Basel). 2022. Vol. 12, N 5. P. 629. doi: 10.3390/life12050629

[61]

Castilla-Guerra L, Gomez Escobar A, Gomez Cerezo JF. Utility of Doppler ultrasound for the study of ocular vascular disease. Rev Clin Esp (Barc). 2021;221(7):418–425. doi: 10.1016/j.rceng.2020.11.007

[62]

Castilla-Guerra L., Gomez Escobar A., Gomez Cerezo J.F. Utility of Doppler ultrasound for the study of ocular vascular disease // Rev Clin Esp (Barc). 2021. Vol. 221, N 7. P. 418–425. doi: 10.1016/j.rceng.2020.11.007

[63]

Kurisheva NI, Maslova EV, Trubilina AV, Fomin AV. OCT-angiography and color doppler imaging in the study of hemoperfusion in the retina and optic nerve in poag. Oftalmologiya. 2016;13(2): 102–110. EDN: WCDCVJ doi: 10.18008/1816-5095-2016-2-102-110

[64]

Курышева Н.И., Маслова Е.В., Трубилина А.В., и др. ОКТ-ангиография и цветовое допплеровское картирование в исследовании гемоперфузии сетчатки и зрительного нерва при глаукоме // Офтальмология. 2016. Т. 13, № 2. С. 102–110. EDN: WCDCVJ doi: 10.18008/1816-5095-2016-2-102-110

[65]

Kiseleva TN, Grigorieva EG, Tarasova LN. Glaucomatous neuropathy concomitant with carotid pathology: the specificity of pathogenesis and diagnostics. Russian Annals of Ophthalmology. 2003;119(6):5–7. EDN: TUDJWB

[66]

Киселева Т.Н., Григорьева Е.Г., Тарасова Л.Н. Глаукоматозная нейропатия в сочетании с патологией сонных артерий: особенности патогенеза и диагностики // Вестник офтальмологии. 2003. Т. 119, № 6. С. 5–7. EDN: TUDJWB

[67]

Kiseleva TN, Tarasova LN, Fokin AA, et al. Clinical features of open-angle glaucoma in patients with critical stenosis of the internal carotid artery. Russian Annals of Ophthalmology. 2002;118(1):6–9. (In Russ.)

[68]

Киселева Т.Н., Тарасова Л.Н., Фокин А.А., и др. Особенности клиники открытоугольной глаукомы у пациентов с критическим стенозом внутренней сонной артерии // Вестник офтальмологии. 2002. Т. 118, № 1. С. 6–9.

[69]

Bittner M, Faes L, Boehni SC, et al. Colour Doppler analysis of ophthalmic vessels in the diagnosis of carotic artery and retinal vein occlusion, diabetic retinopathy and glaucoma: systematic review of test accuracy studies. BMC Ophthalmol. 2016;16(1):214. doi: 10.1186/s12886-016-0384-0

[70]

Bittner M., Faes L., Boehni S.C., et al. Colour Doppler analysis of ophthalmic vessels in the diagnosis of carotic artery and retinal vein occlusion, diabetic retinopathy and glaucoma: systematic review of test accuracy studies // BMC Ophthalmol. 2016. Vol. 16, N 1. P. 214. doi: 10.1186/s12886-016-0384-0

[71]

Kurysheva NI, Parshunina OA, Shatalova EO, et al. Value of structural and hemodynamic parameters for the early detection of primary open-angle glaucoma. Curr Eye Res. 2017;42(3):411–417. doi: 10.1080/02713683.2016.1184281

[72]

Kurysheva N.I., Parshunina O.A., Shatalova E.O., et al. Value of structural and hemodynamic parameters for the early detection of primary open-angle glaucoma // Curr Eye Res. 2017. Vol. 42, N 3. P. 411–417. doi: 10.1080/02713683.2016.1184281

[73]

Kurysheva NI, Kiseleva TN, Irtegova EYu. Features of venous blood flow in primary open-angle glaucoma. Glaucoma. 2012;(4): 24–30. (In Russ.) EDN: PYWARU

[74]

Курышева Н.И., Киселева Т.Н., Иртегова Е.Ю. Особенности венозного кровотока при первичной открытоугольной глаукоме // Глаукома. 2012. № 4. С. 24–30. EDN: PYWARU

[75]

Januleviciene I, Sliesoraityte I, Siesky B, et al. Diagnostic compatibility of structural and haemodynamic parameters in open-angle glaucoma patients. Acta Ophthalmol. 2008;86(5):552–557. doi: 10.1111/j.1600-0420.2007.01091.x

[76]

Januleviciene I., Sliesoraityte I., Siesky B., et al. Diagnostic compatibility of structural and haemodynamic parameters in open-angle glaucoma patients // Acta Ophthalmol. 2008. Vol. 86, N 5. P. 552–557. doi: 10.1111/j.1600-0420.2007.01091.x

[77]

Jonas JB. Central retinal artery and vein collapse pressure in eyes with chronic open angle glaucoma. Br J Ophthalmol. 2003;87(8):949–951. doi: 10.1136/bjo.87.8.949

[78]

Jonas J.B. Central retinal artery and vein collapse pressure in eyes with chronic open angle glaucoma // Br J Ophthalmol. 2003. Vol. 87. N 8. P. 949–951. doi: 10.1136/bjo.87.8.949

[79]

Spaide RF, Fujimoto JG, Waheed NK, et al. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;(64):1–55. doi: 10.1016/j.preteyeres.2017.11.003

[80]

Spaide R.F., Fujimoto J.G., Waheed N.K., et al. Optical coherence tomography angiography // Prog Retin Eye Res. 2018. Vol. 64. P. 1–55. doi: 10.1016/j.preteyeres.2017.11.003

[81]

Rabiolo A, Fantaguzzi F, Montesano G, et al. Comparison of retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness values using spectral-domain and swept-source oct. Transl Vis Sci Technol. 2022;11(6):27. doi: 10.1167/tvst.11.6.27

[82]

Rabiolo A., Fantaguzzi F., Montesano G., et al. Comparison of retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness values using spectral-domain and swept-source oct // Transl Vis Sci Technol. 2022. Vol. 11, N 6. P. 27. doi: 10.1167/tvst.11.6.27

[83]

Chansangpetch S, Lin SC. Optical coherence tomography angiography in glaucoma care. Curr Eye Res. 2018;43(9):1067–1082. doi: 10.1080/02713683.2018.1475013

[84]

Chansangpetch S., Lin S.C. Optical coherence tomography angiography in glaucoma care // Curr Eye Res. 2018. Vol. 43, N 9. P. 1067–1082. doi: 10.1080/02713683.2018.1475013

[85]

Dastiridou A, Chopra V. Potential applications of optical coherence tomography angiography in glaucoma. Curr Opin Ophthalmol. 2018;29(3):226–233. doi: 10.1097/ICU.0000000000000475

[86]

Dastiridou A., Chopra V. Potential applications of optical coherence tomography angiography in glaucoma // Curr Opin Ophthalmol. 2018. Vol. 29, N 3. P. 226–233. doi: 10.1097/ICU.0000000000000475

[87]

Jia Y, Morrison JC, Tokayer J, et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express. 2012;3(12): 3127–3137. doi: 10.1364/BOE.3.003127

[88]

Jia Y., Morrison J.C., Tokayer J., et al. Quantitative OCT angiography of optic nerve head blood flow // Biomed Opt Express. 2012. Vol. 3, N 12. P. 3127–3137. doi: 10.1364/BOE.3.003127

[89]

Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121(7):1322–1332. doi: 10.1016/j.ophtha.2014.01.021

[90]

Jia Y., Wei E., Wang X., et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma // Ophthalmology. 2014. Vol. 121, N 7. P. 1322–1332. doi: 10.1016/j.ophtha.2014.01.021

[91]

Chen CL, Zhang A, Bojikian KD, et al. Peripapillary retinal nerve fiber layer vascular microcirculation in glaucoma using optical coherence tomography-based microangiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT475–OCT485. doi: 10.1167/iovs.15-18909

[92]

Chen C.L., Zhang A., Bojikian K.D., et al. Peripapillary retinal nerve fiber layer vascular microcirculation in glaucoma using optical coherence tomography-based microangiography // Invest Ophthalmol Vis Sci. 2016. Vol. 57, N 9. P. OCT475–OCT485. doi: 10.1167/iovs.15-18909

[93]

Mansoori T, Sivaswamy J, Gamalapati JS, et al. Radial peripapillary capillary density measurement using optical coherence tomography angiography in early glaucoma. J Glaucoma. 2017;26(5): 438–443. doi: 10.1097/IJG.0000000000000649

[94]

Mansoori T., Sivaswamy J., Gamalapati J.S., et al. Radial peripapillary capillary density measurement using optical coherence tomography angiography in early glaucoma // J Glaucoma. 2017. Vol. 26, N 5. P. 438–443. doi: 10.1097/IJG.0000000000000649

[95]

Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect. Ophthalmology. 2017;124(5):709–719. doi: 10.1016/j.ophtha.2017.01.004

[96]

Yarmohammadi A., Zangwill L.M., Diniz-Filho A., et al. Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect // Ophthalmology. 2017. Vol. 124, N 5. P. 709–719. doi: 10.1016/j.ophtha.2017.01.004

[97]

Kurysheva NI. OCT angiography and its role in the study of retinal microcirculation in glaucoma (PART TWO). Russian Ophthalmological Journal. 2018;11(3):95–100. EDN: UWARPE doi: 10.21516/2072-0076-2018-11-3-95-100

[98]

Курышева Н.И. ОКТ-ангиография и ее роль в исследовании ретинальной микроциркуляции при глаукоме (часть вторая) // Российский офтальмологический журнал. 2018. Т. 11, № 3. С. 95–100. EDN: UWARPE doi: 10.21516/2072-0076-2018-11-3-95-100

[99]

Kurysheva NI. Oct angiography and its role in the study of retinal microcirculation in glaucoma (PART ONE). Russian Ophthalmological Journal. 2018;11(2):82–86. EDN: XOTJML doi: 10.21516/2072-0076-2018-11-2-82-86

[100]

Курышева Н.И. ОКТ-ангиография и ее роль в исследовании ретинальной микроциркуляции при глаукоме (часть первая) // Российский офтальмологический журнал. 2018. Т. 11, № 2. С. 82–86. EDN: XOTJML doi: 10.21516/2072-0076-2018-11-2-82-86.

[101]

Suh MH, Zangwill LM, Manalastas PI, et al. Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma. Ophthalmology. 2016;123(12): 2509–2518. doi: 10.1016/j.ophtha.2016.09.002

[102]

Suh M.H., Zangwill L.M., Manalastas P.I., et al. Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma // Ophthalmology. 2016. Vol. 123, N 12. P. 2509–2518. doi: 10.1016/j.ophtha.2016.09.002

[103]

Rao HL, Pradhan ZS, Weinreb RN, et al. Vessel density and structural measurements of optical coherence tomography in primary angle closure and primary angle closure glaucoma. Am J Ophthalmol. 2017;177:106–115. doi: 10.1016/j.ajo.2017.02.020

[104]

Rao H.L., Pradhan Z.S., Weinreb R.N., et al. Vessel density and structural measurements of optical coherence tomography in primary angle closure and primary angle closure glaucoma // Am J Ophthalmol. 2017. Vol. 177. P. 106–115. doi: 10.1016/j.ajo.2017.02.020

[105]

Zhang S, Wu C, Liu L, et al. Optical coherence tomography angiography of the peripapillary retina in primary angle-closure glaucoma. Am J Ophthalmol. 2017;182:194–200. doi: 10.1016/j.ajo.2017.07.024

[106]

Zhang S., Wu C., Liu L., et al. Optical coherence tomography angiography of the peripapillary retina in primary angle-closure glaucoma // Am J Ophthalmol. 2017. Vol. 182. P. 194–200. doi: 10.1016/j.ajo.2017.07.024

[107]

Liu L, Jia Y, Takusagawa HL, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015;133(9):1045–1052. doi: 10.1001/jamaophthalmol.2015.2225

[108]

Liu L., Jia Y., Takusagawa H.L., et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma // JAMA Ophthalmol. 2015. Vol. 133, N 9. P. 1045–1052. doi: 10.1001/jamaophthalmol.2015.2225

[109]

Wang X, Jiang C, Ko T, et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2015;253(9):1557–1564. doi: 10.1007/s00417-015-3095-y

[110]

Wang X., Jiang C., Ko T., et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study // Graefes Arch Clin Exp Ophthalmol. 2015. Vol. 253, N 9. P. 1557–1564. doi: 10.1007/s00417-015-3095-y

[111]

Geyman LS, Garg RA, Suwan Y, et al. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br J Ophthalmol. 2017;101(9):1261–1268. doi: 10.1136/bjophthalmol-2016-309642

[112]

Geyman L.S., Garg R.A., Suwan Y., et al. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study // Br J Ophthalmol. 2017. Vol. 101, N 9. P. 1261–1268. doi: 10.1136/bjophthalmol-2016-309642

[113]

Kurysheva NI, Nikitina AD. Optical coherence tomography and optical coherence tomography angiography for detecting glaucoma progression. Part 2. Clinical and functional correlations, monitoring of advanced glaucoma and limitations of the method. Russian Annals of Ophthalmology. 2023;139(2):76–83. (In Russ.) doi: 10.17116/oftalma202313902176

[114]

Курышева Н.И., Никитина А.Д. Оптическая когерентная томография и оптическая когерентная томография-ангиография в определении прогрессирования глаукомы. Часть 2. Клинико-функциональные корреляции, мониторинг на поздней стадии и ограничения метода // Вестник офтальмологии. 2023. Т. 139, № 2. С. 76–83. doi: 10.17116/oftalma202313902176

[115]

In JH, Lee SY, Cho SH, et al. Peripapillary vessel density reversal after trabeculectomy in glaucoma. J Ophthalmol. 2018;2018:8909714. doi: 10.1155/2018/8909714

[116]

In J.H., Lee S.Y., Cho S.H., et al. Peripapillary vessel density reversal after trabeculectomy in glaucoma // J Ophthalmol. 2018. Vol. 2018. P. 8909714. doi: 10.1155/2018/8909714

[117]

Shin JW, Sung KR, Uhm KB, et al. Peripapillary microvascular improvement and lamina cribrosa depth reduction after trabeculectomy in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2017;58(13):5993–5999. doi: 10.1167/iovs.17-22787

[118]

Shin J.W., Sung K.R., Uhm K.B., et al. Peripapillary microvascular improvement and lamina cribrosa depth reduction after trabeculectomy in primary open-angle glaucoma // Invest Ophthalmol Vis Sci. 2017. Vol. 58, N 13. P. 5993–5999. doi: 10.1167/iovs.17-22787

[119]

Mursch-Edlmayr AS, Luft N, Podkowinski D, et al. Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study. Sci Rep. 2018;8(1):5343. doi: 10.1038/s41598-018-23149-0

[120]

Mursch-Edlmayr A.S., Luft N., Podkowinski D., et al. Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study // Sci Rep. 2018. Vol. 8, N 1. P. 5343. doi: 10.1038/s41598-018-23149-0

[121]

Witkowska KJ, Bata AM, Calzetti G, et al. Optic nerve head and retinal blood flow regulation during isometric exercise as assessed with laser speckle flowgraphy. PLoS One. 2017;12(9):e0184772. doi: 10.1371/journal.pone.0184772

[122]

Witkowska K.J., Bata A.M., Calzetti G., et al. Optic nerve head and retinal blood flow regulation during isometric exercise as assessed with laser speckle flowgraphy // PLoS One. 2017. Vol. 12, N 9. P. e0184772. doi: 10.1371/journal.pone.0184772

[123]

Neroeva NV, Zaytseva OV, Okhotsimskaya TD, et al. Age-related changes of ocular blood flow detecting by laser speckle flowgraphy. Russian Ophthalmological Journal. 2023;16(2):54–62. (In Russ.) doi: 10.21516/2072-0076-2023-16-2-54-62

[124]

Нероева Н.В., Зайцева О.В., Охоцимская Т.Д., и др. Определение возрастных изменений глазного кровотока методом лазерной спекл-флоуграфии // Российский офтальмологический журнал. 2023. Т. 16, № 2. С. 54–62. doi: 10.21516/2072-0076-2023-16-2-54-62

[125]

Gardiner SK, Cull G, Fortune B, et al. Increased optic nerve head capillary blood flow in early primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2019;60(8):3110–3118. doi: 10.1167/iovs.19-27389

[126]

Gardiner S.K., Cull G., Fortune B., et al. Increased optic nerve head capillary blood flow in early primary open-angle glaucoma // Invest Ophthalmol Vis Sci. 2019. Vol. 60, N 8. P. 3110–3118. doi: 10.1167/iovs.19-27389

[127]

Takeshima S, Higashide T, Kimura M, et al. Effects of trabeculectomy on waveform changes of laser speckle flowgraphy in open angle glaucoma. Invest Ophthalmol Vis Sci. 2019;60(2):677–684. doi: 10.1167/iovs.18-25694

[128]

Takeshima S., Higashide T., Kimura M., et al. Effects of trabeculectomy on waveform changes of laser speckle flowgraphy in open angle glaucoma // Invest Ophthalmol Vis Sci. 2019. Vol. 60, N 2. P. 677–684. doi: 10.1167/iovs.18-25694

[129]

Aizawa N, Kunikata H, Shiga Y, et al. Correlation between structure/function and optic disc microcirculation in myopic glaucoma, measured with laser speckle flowgraphy. BMC Ophthalmol. 2014;14:113. doi: 10.1186/1471-2415-14-113

[130]

Aizawa N., Kunikata H., Shiga Y., et al. Correlation between structure/function and optic disc microcirculation in myopic glaucoma, measured with laser speckle flowgraphy // BMC Ophthalmol. 2014. Vol. 14. P. 113. doi: 10.1186/1471-2415-14-113

[131]

Petrov SYu, Okhotsimskaya TD, Markelova OI. Assessment of age-related changes in the parameters of the ocular blood flow of the optic nerve disc by laser speckle fluorography. Point of view. East–West. 2022;1:23–26. EDN: IKLICH doi: 10.25276/2410-1257-2022-1-23-26

[132]

Петров С.Ю., Охоцимская Т.Д., Маркелова О.И. Оценка возрастных изменений параметров глазного кровотока диска зрительного нерва методом лазерной спекл-флоуграфии // Точка Зрения. Восток–Запад 2022. Т. 1. С. 23–26. EDN: IKLICH doi: 10.25276/2410-1257-2022-1-23-26

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1955KB)

217

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/