Multifocal character of lesions in gunshot open globe injury type B in experiment

Aleksei A. Kol'bin , Aleksei N. Kulikov , Natalia N. Zybina , Milena Yu. Frolova , Roman L. Troyanovsky , Vadim S. Chirskiy

Ophthalmology Reports ›› 2024, Vol. 17 ›› Issue (2) : 67 -80.

PDF
Ophthalmology Reports ›› 2024, Vol. 17 ›› Issue (2) : 67 -80. DOI: 10.17816/OV627078
Experimental trials
research-article

Multifocal character of lesions in gunshot open globe injury type B in experiment

Author information +
History +
PDF

Abstract

BACKGROUND: An increase was noted in the number of gunshot eyeball injuries, which are accompanied by low functional outcomes. Reproduction and experimental study of this type of eye injury would help improving the functional and cosmetic treatment results in patients.

AIM: The aim of the study is to investigate gunshot open globe injury type B (penetrating wound without intraocular foreign body) on a standardized experimental model.

MATERIALS AND METHODS: A complete investigation of the standardized model of gunshot open globe injury type B (penetrating wound without intraocular foreign body) simulated on the ballistic test facility was carried out. The experiment was accomplished at the ophthalmology chair on 36 rabbits (71 eyes). The injury was inflicted in the projection of the ciliary body — zone II (Birmingham Eye Trauma Terminology). The examination in the control period included ophthalmologic (ophthalmoscopy, full field electroretinography, optical coherence tomography), biochemical (testing of vitreous fibronectin level), histological and radiological (magnetic resonance imaging, ultrasound examination) methods. Statistical non-parametric methods of data analysis were used.

RESULTS: The analysis of gunshot open globe injury type B model demonstrated the rate and multiple foci of abnormalities practically of all eyeball structures.

CONCLUSIONS: For the first time ever, the characteristics of gunshot open globe injury type B model were studied using a new complex of methods, their high reproducibility (91.5–100%) was demonstrated. Based on recorded abnormalities in all ocular structures, including proliferative vitreoretinopathy, the multifocal character of damage in this type of injury is validated.

Keywords

gunshot fragment open eye injury simulation / optical coherence tomography / proliferative vitreoretinopathy / magnetic resonance imaging / fibronectin / multifocal character of eyeball damage

Cite this article

Download citation ▾
Aleksei A. Kol'bin, Aleksei N. Kulikov, Natalia N. Zybina, Milena Yu. Frolova, Roman L. Troyanovsky, Vadim S. Chirskiy. Multifocal character of lesions in gunshot open globe injury type B in experiment. Ophthalmology Reports, 2024, 17(2): 67-80 DOI:10.17816/OV627078

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Samokhvalov IM, Chuprina AP, Belskikh AN, et al. Military field surgery: textbook. Ed. by Samokhvalov I.M. Saint Petersburg: Kirov Military Medical Academy; 2021. 494 p. EDN: RPOGDB (In Russ.)

[2]

Самохвалов И.М., Чуприна А.П., Бельских А.Н., и др. Военно-полевая хирургия: учебник / под ред. И.М. Самохвалова. Санкт-Петербург: Военно-медицинская академия имени С.М. Кирова, 2021. 494 c. EDN: RPOGDB

[3]

Gundorova RA, Kvasha OI, Ter-Grigoryan MG. Clinic and treatment of eye injuries in extreme situations In: Proceedings of Scientific and Practical Conference; 1993 December 13–17; Suzdal. (In Russ.)

[4]

Гундорова Р.А., Кваша О.И., Тер-Григорян М.Г. Клиника и лечение повреждений глаз при экстремальных ситуациях. В кн.: Материалы научно-практической конференции. Суздаль, 13–17 декабря 1993 г.

[5]

Saidzhamolov KM, Gromakina EV, Makhmadzoda ShK, Karim-zade KhDzh. Functional outcomes of penetrating eye injuries in children. Russian Annals of Ophthalmology. 2022;138(4):15–18. (In Russ.) EDN: TUHSNZ doi: 10.17116/oftalma202213804115

[6]

Саиджамолов К.М., Громакина Е.В., Махмадзода Ш.К., Карим-заде Х.Дж. Функциональные исходы проникающих ранений глазного яблока у детей // Вестник офтальмологии. 2022. Т. 138, № 4. С. 15–18. EDN: TUHSNZ doi: 10.17116/oftalma202213804115

[7]

Kulikov AN. Ophthalmotraumatology: past, present, future. Bureau of the Department of Medical Sciences of the Russian Academy of Sciences. Minutes No. 13. Resolution N. 59 from 23.11.2022. Saint Petersburg; 2022. (In Russ.)

[8]

Куликов А.Н. Офтальмотравматология: прошлое, настоящее, будущее // Бюро Отделения медицинских наук РАН. Протокол № 13. Постановление № 59 от 23.11.2022. Санкт-Петербург, 2022.

[9]

Rana V, Patra VK, Bandopadhayay S, et al. Combat ocular trauma in counterinsurgency operations. Indian J Ophthalmol. 2023;71(12):3615–3619. doi: 10.4103/IJO.IJO_609_23

[10]

Rana V., Patra V.K., Bandopadhayay S., et al. Combat ocular trauma in counterinsurgency operations // Indian J Ophthalmol. 2023. Vol. 71, N. 12. P. 3615–3619. doi: 10.4103/IJO.IJO_609_23

[11]

Serdyuk VN, Ustimenko SB, Golovkin VV. Features of ophthalmosurgical care for patients with eye injuries sustained during combat operations in the ATO zone // Ukraine. Zdorov’ya natsii. 2016;4(1): 74–77. (In Russ.)

[12]

Сердюк В.Н., Устименко С.Б., Головкин В.В. Особенности оказания офтальмохирургической помощи больным с травмами глаз, полученными во время боевых действий в зоне АТО // Україна. Здоров’я нації. 2016. Т. 4, № 1. С. 74–77.

[13]

Sobaci G, Mutlu FM, Bayer A, et al. Deadly weapon-related open-globe injuries: outcome assessment by the ocular trauma classification system. Am J Ophthalmol. 2000;129(1):47–53. doi: 10.1016/s0002-9394(99)00254-8

[14]

Sobaci G., Mutlu F.M., Bayer A., et al. Deadly weapon-related open-globe injuries: outcome assessment by the ocular trauma ciassification // Am J Ophthalmol. Vol. 129, N. 1. P. 47–53. doi: 10.1016/s0002-9394(99)00254-8

[15]

Sosnovskii SV, Kulikov AN, Churashov SV. On the possible causes of poor functional outcomes of combined optical-reconstructive vitreoretinal surgery for severe open eye trauma. Modern Technologies in Ophthalmology. 2016;(1):205–208. (In Russ.) EDN: WEHAAL

[16]

Сосновский С.В., Куликов А.Н., Чурашов С.В. О возможных причинах низких функциональных исходов комбинированной оптико-реконструктивной витреоретинальной хирургии при тяжелой открытой травме глаз // Современные технологии в офтальмологии. 2016. № 1. С. 205–208. EDN: WEHAAL

[17]

Badalov VI, Belyakov KV, Buinov LG, et al. Medicine of emergency situations. Organisation. Clinic. Diagnostics. Treatment. Rehabilitation. Innovation. Volume 1. Kazan: Kazan Federal University; 2015. 777 p. (In Russ.) EDN: ZNEZSJ

[18]

Бадалов В.И., Беляков К.В., Буйнов Л.Г., и др. Медицина чрезвычайных ситуаций. Организация. Клиника. Диагностика. Лечение. Реабилитация. Инновации. Том 1. Казань: Казанский федеральный университет, 2015. 777 c. EDN: ZNEZSJ

[19]

Scott R. The injured eye. Philos Trans R Soc Lond B Biol Sci. 2011;366(1562):251–260. doi: 10.1098/rstb.2010.023411

[20]

Scott R. The injured eye // Philos Trans R Soc Lond B Biol Sci. 2011. Vol. 366, N. 1562. P. 251–260. doi: 10.1098/rstb.2010.0234

[21]

Soliman W, Tawfik MA, Abdelazeem K, Kedwany SM. “Iris shelf” Technique for management of posterior segment intraocular foreign bodies. Retina. 2012;41(10):2041–2047. doi: 10.1097/IAE.0000000000003154

[22]

Soliman W., Tawfik M.A., Abdelazeem K., Kedwany S.M. “Iris shelf” Technique for management of posterior segment intraocular foreign bodies // Retina. 2012. Vol. 41, N. 10. P. 2041–2047. doi: 10.1097/IAE.0000000000003154

[23]

Volkov VV. Open eye trauma: a monograph. VMedA; 2016. 280 p. (In Russ.)

[24]

Волков В.В. Открытая травма глаза: монография. ВМедА, 2016. 280 с.

[25]

Kanevskii BA, Churashov SV, Kulikov AN. A standardised experimental model of gunshot open eye trauma. Modern Technologies in Ophthalmology. 2018;(4):147–149. (In Russ.) EDN: XTFTGX

[26]

Каневский Б.А., Чурашов С.В., Куликов А.Н. Стандартизированная экспериментальная модель огнестрельной открытой травмы глаза // Современные технологии в офтальмологии. 2018. № 4. С. 147–149. EDN: XTFTGX

[27]

Gregor Z, Ryan SJ. Combined posterior contusion and penetrating injury in the pig eye. III. A controlled treatment trial of vitrectomy. Br J Ophthalmol. 1983;67(5):282–285. doi: 10.1136/bjo.67.5.282

[28]

Gregor Z., Ryan S.J. Combined posterior contusion and penetrating injury in the pig eye. III. A controlled treatment trial of vitrectomy // Br J Ophthalmol. 1983. Vol. 67, N. 5. P. 282–285. doi: 10.1136/bjo.67.5.282

[29]

Teplyashin AP. To the doctrine of histological changes in the retina after wounds. Experimental study. Kazan: Tipolitografiya VM. Klyuchnikov; 1893. 73 p. (In Russ.)

[30]

Тепляшин А.П. К учению о гистологических изменениях в сетчатке после ранений. Экспериментальное исследование. Казань: Типолитография В.М. Ключникова, 1893. 73 с.

[31]

Kolbin AA, Churashov SV, Kulikov AN, et al. Standardized experimental model of open — fire gunshot eye injury type B, C, D. Military Medical Journal. 2020;341(8):31–38. (In Russ.) EDN: UHPWIF doi: 10.17816/RMMJ82355

[32]

Кольбин А.А., Чурашов С.В., Куликов А.Н., и др. Стандартизированная экспериментальная модель огнестрельной открытой травмы глаза типа B, C, D // Военно-медицинский журнал. 2020. Т. 341, № 8. C. 31–38. EDN: UHPWIF doi: 10.17816/RMMJ82355

[33]

Ogurtsov AN, Bliznyuk ON. Scientific research and scientific information: textbook. Kharkiv: NTU «KHPI»; 2011. 400 p. (In Russ.)

[34]

Огурцов А.Н., Близнюк О.Н. Научные исследования и научная информация: учебное пособие. Харьков: НТУ «ХПИ», 2011. 400 c.

[35]

Arevalo JF, Sanchez JG, Costa RA, et al. Optical coherence tomography characteristics of full-thickness traumatic macular holes. Eye (Lond). 2008;22(11):1436–1441. doi: 10.1038/sj.eye.6702975

[36]

Arevalo J.F., Sanchez J.G., Costa R.A., et al. Optical coherence tomography characteristics of full-thickness traumatic macular holes // Eye (Lond). 2008. Vol. 22, N. 11. P. 1436–1441. doi: 10.1038/sj.eye.6702975

[37]

Echegaray JJ, Iyer P, Acon D, et al. Superficial and deep capillary plexus nonperfusion in nonaccidental injury on OCTA. J Vitreoretin Dis. 2023;7(1):79–82. doi: 10.1177/24741264221120643

[38]

Echegaray J.J., Iyer P., Acon D., et al. Superficial and deep capillary plexus nonperfusion in nonaccidental injury on OCTA // J Vitreoretin Dis. 2023. Vol. 7, N. 1. P. 79–82. doi: 10.1177/24741264221120643

[39]

Nikolaenko EN, Kulikov AN, Volkov VV, Danilichev VF. Retinal and optic nerve functional activity after vitrectomy for vitreomacular traction syndrome. Ophthalmology Reports. 2019;12(3):13–20. EDN: PBNHMR doi: 10.17816/OV11040

[40]

Николаенко Е.Н., Куликов А.Н., Волков В.В., Даниличев В.Ф. Функциональная активность сетчатки и зрительного нерва после витрэктомии при витреомакулярном тракционном синдроме // Офтальмологические ведомости. 2019. Т. 12, № 3. C. 13–20. EDN: PBNHMR doi: 10.17816/OV11040

[41]

Pelletier J, Koyfman A, Long B. High risk and low prevalence diseases: Open globe injury. Am J Emerg Med. 2023;64:113–120. doi: 10.1016/j.ajem.2022.11.036

[42]

Pelletier J., Koyfman A., Long B. High risk and low prevalence diseases: Open globe injury // Am J Emerg Med. 2023. Vol. 64. P. 113–120. doi: 10.1016/j.ajem.2022.11.036

[43]

Tan G, Huang X, Ye L, et al. Altered spontaneous brain activity patterns in patients with unilateral acute open globe injury using amplitude of low-frequency fluctuation: a functional magnetic resonance imaging study. Neuropsychiatr Dis Treat. 2016;12:2015–2020. doi: 10.2147/NDT.S110539

[44]

Tan G., Huang X., Ye L., et al. Altered spontaneous brain activity patterns in patients with unilateral acute open globe injury using amplitude of low-frequency fluctuation: a functional magnetic resonance imaging study // Neuropsychiatr Dis Treat. 2016. Vol. 12, P. 2015–2020. doi: 10.2147/NDT.S110539

[45]

Li CQ, Yao F, Yu CY, et al. Investigation of changes in activity and function in acute unilateral open globe injury-associated brain regions based on percent amplitude of fluctuation method: a resting-state functional MRI study. Acta Radiol. 2022;63(9):1223–1232. doi: 10.1177/02841851211034035

[46]

Li CQ., Yao F., Yu CY., et al. Investigation of changes in activity and function in acute unilateral open globe injury-associated brain regions based on percent amplitude of fluctuation method: a resting-state functional MRI study // Acta Radiol. 2022. Vol. 63, N. 9. P. 1223–1232. doi: 10.1177/02841851211034035

[47]

Chaudhary R, Scott RAH, Wallace G, et al. Inflammatory and fibrogenic factors in proliferative vitreoretinopathy development. Transl Vis Sci Technol. 2020;9(3):23. doi: 10.1167/tvst.9.3.23

[48]

24 Chaudhary R., Scott R.A.H., Wallace G., et al. Inflammatory and fibrogenic factors in proliferative vitreoretinopathy development // Transl Vis Sci Technol. 2020. Vol. 9, N. 3. P. 23. doi: 10.1167/tvst.9.3.23

[49]

Olsen TW, Asheim CG, Salomao DR, et al. Aerosolized, gas-phase, intravitreal methotrexate reduces proliferative vitreoretinopathy in a randomized trial in a porcine model. Ophthalmol Sci. 2023;3(3):100296. doi: 10.1016/j.xops.2023.100296

[50]

Olsen T.W., Asheim C.G., Salomao D.R., et al. Aerosolized, gas-phase, intravitreal methotrexate reduces proliferative vitreoretinopathy in a randomized trial in a porcine model // Ophthalmol Sci. 2023. Vol. 3, N. 3. P. 100296. doi: 10.1016/j.xops.2023.100296

[51]

Dong L, Han H, Huang X, et al. Idelalisib inhibits experimental proliferative vitroretinopathy. Lab Invest. 2022;102(12):1296–1303. doi: 10.1038/s41374-022-00822-7

[52]

Dong L., Han H., Huang X, et al. Idelalisib inhibits experimental proliferative vitroretinopathy // Lab Invest. 2022. Vol. 102, N. 12. P. 1296–1303. doi: 10.1038/s41374-022-00822-7

[53]

Naguib S, Bernardo-Colón A, Rex TS. Intravitreal injection worsens outcomes in a mouse model of indirect traumatic optic neuropathy from closed globe injury. Exp Eye Res. 2021;202:108369. doi: 10.1016/j.exer.2020.108369

[54]

Naguib S., Bernardo-Colón A., Rex T.S. Intravitreal injection worsens outcomes in a mouse model of indirect traumatic optic neuropathy from closed globe injury // Exp Eye Res. 2021. Vol. 202. P. 108369. doi: 10.1016/j.exer.2020.108369

[55]

Patent RU No. 2764368/ 29.03.2021. Kulikov AN, Kol’bin AA, Churashov SV, et al. Method for modeling a perforated eyeball injury. Available from: https://yandex.ru/patents/doc/RU2764368C1_20220117

[56]

Патент РФ на изобретение № 2764368/ 29.03.2021. Куликов А.Н., Кольбин А.А., Чурашов С.В., и др. Способ моделирования прободного ранения глазного яблока. Режим доступа: https://yandex.ru/patents/doc/RU2764368C1_20220117

[57]

Robson AG, Frishman LJ, Grigg J, et al. ISCEV Standard for full-field clinical electroretinography (2022 update). Doc Ophthalmol. 2022;144(3):165–177. doi: 10.1007/s10633-022-09872-0

[58]

Robson A.G., Frishman L.J., Grigg J., et al. ISCEV Standard for full-field clinical electroretinography (2022 update) // Doc Ophthalmol. 2022. Vol. 144, N. 3. P. 165–177. doi: 10.1007/s10633-022-09872-0

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/