Non-standard computer perimetry in the diagnosis of some optic neuropathies

Irina A. Tikhonovskaya , Irina L. Simakova

Ophthalmology Reports ›› 2021, Vol. 14 ›› Issue (1) : 75 -87.

PDF (283KB)
Ophthalmology Reports ›› 2021, Vol. 14 ›› Issue (1) : 75 -87. DOI: 10.17816/OV60059
Reviews
review-article

Non-standard computer perimetry in the diagnosis of some optic neuropathies

Author information +
History +
PDF (283KB)

Abstract

Modern computer perimetry is divided into traditional – white stimulus-on-white background, the gold standard of which is perimetry performed by using expert class perimeters Humphrey and Octopus and therefore called standard automatic or automated perimetry (SAP), and non-traditional or non-standard perimetry, which differs, first of all, in a different nature of a stimulus. The article is a review devoted to the assessment of the diagnostic capabilities of non-standard computer perimetry in the form of different variants of perimetry with doubling the spatial frequency (Frequency Doubling Technology Perimetry or FDT perimetry), which is performed by using perimeters of the 1st (Carl Zeiss Humphrey 710 Visual Field / FDT, 1997) and the 2nd (Carl Zeiss Humphrey Matrix / HM 715, 800 Visual Field Analyzer, 2005, 2010) generation. Most authors consider that FDT perimetry is effective in a glaucoma screening and, possibly, in monitoring a glaucomatous process, but only a few authors consider that non-standard perimetry method can be useful in diagnosing optic neuropathies of a different nature.

Keywords

non-standard computer perimetry / FDT perimetry / HM FDT perimetry / optic neuropathies / glaucoma optic neuropathy

Cite this article

Download citation ▾
Irina A. Tikhonovskaya, Irina L. Simakova. Non-standard computer perimetry in the diagnosis of some optic neuropathies. Ophthalmology Reports, 2021, 14(1): 75-87 DOI:10.17816/OV60059

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sheremet NL. Diagnostika opticheskih nejropatij razlichnogo geneza [dissertation]. Moscow, 2015. (In Russ.)

[2]

Шеремет Н.Л. Диагностика оптических нейропатий различного генеза: дис. … д-ра. мед. наук. М, 2015.

[3]

Neroev VV. Invalidnost’ po zreniju v Rossijskoj Federacii. Rossijskij oftal’mologicheskij congress. Proceedings of the Russian science conference “Belye Nochi”. St. Petersburg, 2017:28–30. (In Russ.)

[4]

Нероев В.В. Инвалидность по зрению в Российской Федерации // Российский офтальмологический конгресс «Белые Ночи». Санкт-Петербург, 2017. С. 28–30.

[5]

Badimova AV. Epidemiological features of eye disorders morbidity and disability in Russia and abroad. Science of the young (Eruditio Juvenium). 2020;8(2):261–268. (In Russ). DOI: 10.23888/HMJ202082261-268

[6]

Бадимова А.В. Особенности эпидемиологии заболеваемости и инвалидности в связи с болезнями органов зрения в России и за рубежом // Наука молодых–Eruditio Juvenium. 2020. Т. 8, № 2. С. 261–268. DOI: 10.23888/HMJ202082261-268

[7]

Simakova IL. Perimetrija s udvoennoj prostranstvennoj chastotoj kak osnova skrininga na glaukomu i monitoringa glaukomatoznogo processa [dissertation]. Saint Petersburg, 2010. (In Russ.)

[8]

Симакова И.Л. Периметрия с удвоенной пространственной частотой как основа скрининга на глаукому и мониторинга глаукоматозного процесса: дис. … д-ра. мед. наук. Санкт-Петербург, 2010.

[9]

Volkov VV. Glaukoma otkrytougol’naja. Moscow: Med. inform. agentstvo, 2008. (In Russ.)

[10]

Волков В.В. Глаукома открытоугольная. М.: Мед. информ. агентство, 2008.

[11]

Serdyukova SA, Simakova IL. Computer perimetry in the diagnosis of primary open-angle glaucoma. Ophthalmology journal. 2018;11(1):54–65. (In Russ.) DOI: 10.17816/OV11154-65

[12]

Сердюкова С.А., Симакова И.Л. Компьютерная периметрия в диагностике первичной открытоугольной глаукомы // Офтальмологические ведомости. 2018. Т. 11, № 1. С. 54–65. DOI: 10.17816/OV11154-65

[13]

Kunimatsu S, Tomita G, Araie M, et al. Frequency doubling technology and scanning laser tomography in eyes with generalized enlargement of optic disc cupping. J Glaucoma. 2005;14(4):280–287. DOI: 10.1097/01.ijg.0000169392.02180.5b

[14]

Kunimatsu S., Tomita G., Araie M., et al. Frequency doubling technology and scanning laser tomography in eyes with generalized enlargement of optic disc cupping // J Glaucoma. 2005. Vol. 14, No. 4. P. 280–287. DOI: 10.1097/01.ijg.0000169392.02180.5b

[15]

Medeiros FA, Sample PA, Zangwill LM, et al. A statistical approach to the evaluation of covariate effects on the receiver operating characteristic curves of diagnostic tests in glaucoma. Investig Ophthalmol Vis Sci. 2006;47(6):2520–2527. DOI: 10.1167/iovs. 05-1441

[16]

Medeiros F.A., Sample P.A., Zangwill L.M., et al. A statistical approach to the evaluation of covariate effects on the receiver operating characteristic curves of diagnostic tests in glaucoma // Investig Ophthalmol Vis Sci. 2006. Vol. 47, No. 6. P. 2520–2527. DOI: 10.1167/iovs.05-1441

[17]

Terry AL, Paulose-Ram R, Tilert TJ, et al. The methodology of visual field testing with frequency doubling technology in the National Health and Nutrition Examination Survey, 2005–2006. Ophthalmic Epidemiol. 2010;17(6):411–421. DOI: 10.3109/09286586.2010.528575

[18]

Terry A.L., Paulose-Ram R., Tilert T.J., et al. The methodology of visual field testing with frequency doubling technology in the National Health and Nutrition Examination Survey, 2005–2006 // Ophthalmic epidemiol. 2010. Vol. 17, No. 6. P. 411–421. DOI: 10.3109/09286586.2010.528575

[19]

Weinreb R, Greve E. Progression of Glaucoma: the 8th consensus report of the world glaucoma association. Netherlands, Amsterdam: Kugler Publications, 2011. 170 p.

[20]

Weinreb R., Greve E. Progression of Glaucoma: the 8th consensus report of the world glaucoma association. Netherlands, Amsterdam: Kugler Publications, 2011. 170 p.

[21]

Zeppieri M, Johnson CA. Frequency doubling technology (FDT) perimetry. Imaging and perimetry society. 2013.

[22]

Zeppieri M., Johnson C.A. Frequency doubling technology (FDT) perimetry. Imaging and perimetry society. 2013.

[23]

Boland MV, Gupta P, Ko F, et al. Evaluation of frequency-doubling technology perimetry as a means of screening for glaucoma and other eye diseases using the National Health and Nutrition Examination Survey. JAMA Ophthalmol. 2016;134(1):57-62. DOI: 10.1001/jamaophthalmol.2015.4459

[24]

Boland M.V., Gupta P., Ko F., et al. Evaluation of frequency-doubling technology perimetry as a means of screening for glaucoma and other eye diseases using the National Health and Nutrition Examination Survey // JAMA Ophthalmol. 2016. Vol. 134, No. 1. P. 57–62. DOI: 10.1001/jamaophthalmol.2015.4459

[25]

Camp AS, Weinreb RN. Will рerimetry be performed to monitor glaucoma in 2025? Ophthalmology. 2017;124(12):71–75. DOI: 10.1016/j.ophtha.2017.04.009

[26]

Camp A.S., Weinreb R.N. Will рerimetry be performed to monitor glaucoma in 2025? // Ophthalmology. 2017. Vol. 124, No. 12. P. 71–75. DOI: 10.1016/j.ophtha.2017.04.009

[27]

Jung KI, Park CK. Detection of functional change in preperimetric and perimetric glaucoma using 10-2 matrix perimetry. Am J Ophthalmol. 2017;182:35–44. DOI: 10.1016/j.ajo.2017.07.007

[28]

Jung K.I., Park C.K. Detection of functional change in preperimetric and perimetric glaucoma using 10-2 matrix perimetry // Am J Ophthalmol. 2017. Vol. 182. P. 35–44. DOI: 10.1016/j.ajo.2017.07.007

[29]

Furlanetto RL, Teixeira SH, Gracitelli CPB, et al. Structural and functional analyses of the optic nerve and lateral geniculate nucleus in glaucoma. PLoS ONE. 2018;13(3): e0194038. DOI: 10.1371/journal.pone.0194038

[30]

Furlanetto R.L., Teixeira S.H., Gracitelli C.P.B., et al. Structural and functional analyses of the optic nerve and lateral geniculate nucleus in glaucoma // PLoS ONE. 2018. Vol. 13, No. 3. e0194038. DOI: 10.1371/journal.pone.0194038

[31]

Terauchi R, Wada T, Ogawa S, et al. FDT Perimetry for Glaucoma Detection in Comprehensive Health Checkup Service. J Ophthalmol. 2020;2020. DOI: 10.1155/2020/4687398

[32]

Terauchi R., Wada T., Ogawa S., et al. FDT Perimetry for Glaucoma Detection in Comprehensive Health Checkup Service // J Ophthalmol. 2020. P. 4687398. DOI: 10.1155/2020/4687398

[33]

Corallo G, Cicinelli S, Papadia M, et al. Conventional perimetry, short-wavelength automated perimetry, frequency-doubling technology, and visual evoked potentials in the assessment of patients with multiple sclerosis. Eur J Ophthalmol. 2005;15:730–738. DOI: 10.1177/112067210501500612

[34]

Corallo G., Cicinelli S., Papadia M., et al. Conventional perimetry, short-wavelength automated perimetry, frequency-doubling technology, and visual evoked potentials in the assessment of patients with multiple sclerosis // Eur J Ophthalmol. 2005. Vol. 15. P. 730–738. DOI: 10.1177/112067210501500612

[35]

Ruseckaite R, Maddess TD, James AC, et al. Frequency doubling illusion VEPs and automated perimetry in multiple sclerosis. Doc Ophthalmol. 2006;113(1):29–41. DOI: 10.1007/s10633-006-9011-3

[36]

Ruseckaite R., Maddess T.D., James A.C., et al. Frequency doubling illusion VEPs and automated perimetry in multiple sclerosis // Doc Ophthalmol. 2006. Vol. 113, No. 1. P. 29–41. DOI: 10.1007/s10633-006-9011-3

[37]

Shahraki K, Mostafa SS, Kaveh AA, et al. Comparing the Sensitivity of Visual Evoked Potential and Standard Achromatic Perimetry in Diagnosis of Optic Neuritis. JOJ Ophthal. 2017;2(5):555–600. DOI: 10.19080/JOJO.2017.02.555600003

[38]

Shahraki K., Mostafa S.S., Kaveh A.A., et al. Comparing the Sensitivity of Visual Evoked Potential and Standard Achromatic Perimetry in Diagnosis of Optic Neuritis // JOJ Ophthal. 2017. Vol. 2, No. 5. P. 555–600. DOI: 10.19080/JOJO.2017.02.555600003

[39]

Merle H, Olindo S, Donnio A, et al. Retinal Nerve Fiber Layer Thickness and Spatial and Temporal Contrast Sensitivity in Multiple Sclerosis. Eur J Ophthalmol. 2018;20(1):158–166. DOI: 10.1177/112067211002000122

[40]

Merle H., Olindo S., Donnio A., et al. Retinal Nerve Fiber Layer Thickness and Spatial and Temporal Contrast Sensitivity in Multiple Sclerosis // Eur J Ophthalmol. 2018. Vol. 20, No. 1. P. 158–166. DOI: 10.1177/112067211002000122

[41]

Yoon MK, Hwang TN, Day S, et al. Comparison of Humphrey Matrix frequency doubling technology to standard automated perimetry in neuro-ophthalmic disease. Middle East Afr J Ophthalmol. 2012;(19):211–215. DOI: 10.4103/0974-9233.95254

[42]

Yoon M.K., Hwang T.N., Day S., et al. Comparison of Humphrey Matrix frequency doubling technology to standard automated perimetry in neuro-ophthalmic disease // Middle East Afr J Ophthalmol. 2012. No. 19. P. 211–215. DOI: 10.4103/0974-9233.95254

[43]

Arantes TE, Garcia CR, Mello PA, et al. Structural and functional assessment in HIV-infected patients using optical coherence tomography and frequency-doubling technology perimetry. Am J Ophthalmol. 2010;149(4):571–576. DOI: 10.1016/j.ajo.2009.11.026

[44]

Arantes T.E., Garcia C.R., Mello P.A., et al. Structural and functional assessment in HIV-infected patients using optical coherence tomography and frequency-doubling technology perimetry // Am J Ophthalmol. 2010. Vol. 149, No. 4. P. 571–576. DOI: 10.1016/j.ajo.2009.11.026

[45]

Arantes TE, Garcia CR, Tavares IM, et al. Relationship between retinal nerve fiber layer and visual field function in human immunodeficiency virus-infected patients without retinitis. Retina. 2012;32(1):152–159. DOI: 10.1097/IAE.0b013e31821502e1

[46]

Arantes T.E., Garcia C.R., Tavares I.M. et al. Relationship between retinal nerve fiber layer and visual field function in human immunodeficiency virus-infected patients without retinitis // Retina. 2012. Vol. 32, No. 1. P. 152–159. DOI:10.1097/IAE.0b013e31821502e1

[47]

Moyal L, Blumen-Ohana E, Blumen M, et al. Parafoveal and optic disc vessel density in patients with obstructive sleep apnea syndrome: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2018;256(7):1235–1243. DOI: 10.1007/s00417-018-3943-7

[48]

Moyal L., Blumen-Ohana E., Blumen M., et al. Parafoveal and optic disc vessel density in patients with obstructive sleep apnea syndrome: an optical coherence tomography angiography study // Graefes Arch Clin Exp Ophthalmol. 2018. Vol. 256, No. 7. P. 1235–1243. DOI: 10.1007/s00417-018-3943-7

[49]

Walsh DV, Capó-Aponte JE, Jorgensen-Wagers K, et al. Visual field dysfunctions in warfighters during different stages following blast and nonblast mTBI. Mil Med. 2015;180(2):178–185. DOI: 10.7205/MILMED-D-14-00230

[50]

Walsh D.V., Capó-Aponte J.E., Jorgensen-Wagers K., et al. Visual field dysfunctions in warfighters during different stages following blast and nonblast mTBI // Mil Med. 2015. Vol. 180, No. 2. P. 178–185. DOI: 10.7205/MILMED-D-14-00230

[51]

Cesareo M, Martucci A, Ciuffoletti E, et al. Association between Alzheimer’s disease and glaucoma: a study based on Heidelberg retinal tomography and frequency doubling technology perimetry. Front Neurosci. 2015;9:479. DOI: 10.3389/fnins.2015.00479

[52]

Cesareo M., Martucci A., Ciuffoletti E., et al. Association between Alzheimer’s disease and glaucoma: a study based on Heidelberg retinal tomography and frequency doubling technology perimetry // Front Neurosci. 2015. Vol. 9. P. 479. DOI: 10.3389/fnins.2015.00479

[53]

Aykan U, Akdemir MO, Yildirim O, et al. Screening for patients with mild Alzheimer Disease using frequency doubling technology perimetry. Neuro-Ophthalmology. 2013;37(6):239–246. DOI: 10.3109/ 01658107.2013.830627

[54]

Aykan U., Akdemir M.O., Yildirim O., et al. Screening for patients with mild Alzheimer Disease using frequency doubling technology perimetry // Neuro-Ophthalmology. 2013. Vol. 37, No. 6. P. 239–246. DOI: 10.3109/01658107.2013.830627

[55]

Simakova IL, Volkov VV, Bojko JV, et al. Sozdanie metoda perimetrii s udvoennoj prostranstvennoj chastotoj za rubezhom i v Rossii. National Journal glaucoma. 2009;8(2):5–21. (In Russ.)

[56]

Симакова И.Л., Волков В.В., Бойко Э.В., и др. Создание метода периметрии с удвоенной пространственной частотой за рубежом и в России // Национальный журнал глаукома. 2009. Т. 8, № 2. С. 5–21.

[57]

Simakova IL, Volkov VV, Bojko JV. Sravnenie rezul’tatov razrabotannogo metoda perimetrii s udvoennoj prostranstvennoj chastotoj i original’nogo metoda FDT-perimetrii. National Journal glaucoma. 2010;9(1):5–11. (In Russ.)

[58]

Симакова И.Л., Волков В.В., Бойко Э.В. Сравнение результатов разработанного метода периметрии с удвоенной пространственной частотой и оригинального метода FDT-периметрии // Национальный журнал глаукома. 2010. Т. 9, № 1. С. 5–11.

[59]

Boiko EV, Simakova IL, Kuzmicheva OV, et al. High-technological screening for glaucoma. Voenno-medicinskij zhurnal. 2010;331(2):23–26. (In Russ.) DOI: 10.1007/BF03358198

[60]

Бойко Э.В., Симакова И.Л., Кузьмичева О.В., и др. Высокотехнологичный скрининг на глаукому // Военно-медицинский журнал. 2010. Т. 331, № 2. С. 23–26. DOI: 10.1007/BF03358198

[61]

Burgansky-Eliash Z, Wollstein G, Patel A, et al. Glaucoma detection with matrix and standard achromatic perimetry. Br J Ophthalmol. 2007;91(7):933–938. DOI: 10.1136/bjo.2006.110437

[62]

Burgansky-Eliash Z., Wollstein G., Patel A., et al. Glaucoma detection with matrix and standard achromatic perimetry // Br J Ophthalmol. 2007. Vol. 91, No. 7. P. 933–938. DOI: 10.1136/bjo.2006.110437

[63]

Han S, Baek SH, Kim US. Comparison of Three Visual Field Tests in Children: Frequency Doubling Test, 24-2 and 30-2 SITA Perimetry. Semin Ophthalmol. 2017;32(5):647–650. DOI: 10.3109/08820538.2016.1157611

[64]

Han S., Baek S.H., Kim U.S. Comparison of Three Visual Field Tests in Children: Frequency Doubling Test, 24-2 and 30-2 SITA Perimetry // Semin Ophthalmol. 2017. Vol. 32, No. 5. P. 647–650. DOI: 10.3109/08820538.2016.1157611

[65]

Simakova IL, Boiko EV. Impact of cataract and age-related macular denegeration on the results of various perimetry techniques. The Russian Annals of Ophthalmology. 2010;126(3):10–14. (In Russ.)

[66]

Симакова И.Л., Бойко Э.В. Влияния катаракты и макулодистрофии на результаты различных методов периметрии // Вестник офтальмологии. 2010. Т. 126, № 3. С. 10–14.

[67]

Casson RJ, James B. Effect of cataract on frequency doubling perimetry in the screening mode. J Glaucoma. 2006;15(1):23–25. DOI: 10.1097/01.ijg.0000197089.53354.6f

[68]

Casson R.J., James B. Effect of cataract on frequency doubling perimetry in the screening mode // J Glaucoma. 2006. Vol. 15, No. 1. P. 23–25. DOI: 10.1097/01.ijg.0000197089.53354.6f

[69]

Erichev VP, Petrov SY, Kozlova IV, et al. Modern methods of functional diagnostics and monitoring of glaucoma. Part 1. Perimetry as a functional diagnostics method. National Journal glaucoma. 2015;14(2):75–81. (In Russ.)

[70]

Еричев В.П., Петров С.Ю., Козлова И.В., и др. Современные методы функциональной диагностики и мониторинга глаукомы. Часть 1. Периметрия как метод функциональных исследований // Национальный журнал глаукома. 2015. Т. 14, № 2. С. 75–81.

[71]

Lamparter J, Russell RA, Schulze A, et al. Structure-function relationship between FDF, FDT, SAP, and scanning laser ophthalmoscopy in glaucoma patients. Investig Ophthalmol Vis Sci. 2012;53(12):7553–7559. DOI: 10.1167/iovs.12-10892

[72]

Lamparter J., Russell R.A., Schulze A., et al. Structure-function relationship between FDF, FDT, SAP, and scanning laser ophthalmoscopy in glaucoma patients // Investig Ophthalmol Vis Sci. 2012. Vol. 53, No. 12. P. 7553–7559. DOI: 10.1167/iovs.12-10892

[73]

Kanadani FN, Mello PA, Dorairaj SK, et al. Frequency-doubling technology perimetry and multifocal visual evoked potential in glaucoma, suspected glaucoma, and control patients. Clin Ophthalmol. 2014;8:1323. DOI: 10.2147/OPTH.S64684

[74]

Kanadani F.N., Mello P.A., Dorairaj S.K., et al. Frequency-doubling technology perimetry and multifocal visual evoked potential in glaucoma, suspected glaucoma, and control patients // Clin Ophthalmol. 2014. Vol. 8. P. 1323. DOI: 10.2147/OPTH.S64684

[75]

Patel A, Wollstein G, Ishikawa H, et al. Comparison of visual field defects using matrix perimetry and standard achromatic perimetry. Ophthalmology. 2007;114:480–487. DOI: 10.1016/j.ophtha.2006.08.009

[76]

Patel A., Wollstein G., Ishikawa H., et al. Comparison of visual field defects using matrix perimetry and standard achromatic perimetry // Ophthalmology. 2007. Vol. 114. P. 480–487. DOI: 10.1016/j.ophtha.2006.08.009

[77]

McManus JR, Netland PA. Screening for glaucoma: rationale and strategies. Curr Opin Ophthalmol. 2013;24(2):144–149. DOI: 10.1097/ICU.0b013e32835cf078

[78]

McManus J.R., Netland P.A. Screening for glaucoma: rationale and strategies // Curr Opin Ophthalmol. 2013. Vol. 24, No. 2. P. 144–149. DOI:10.1097/ICU.0b013e32835cf078

[79]

Johnson CA. Screening for glaucomatous visual field loss with Frequency Doubling perimetry. Investig Ophthalmol Vis Sci. 1997;3(2):413–424

[80]

Johnson C.A. Screening for glaucomatous visual field loss with Frequency Doubling perimetry // Investig Ophthalmol Vis Sci. 1997. Vol. 3, No. 2. P. 413–424.

[81]

Artes PH, Hutchison DM, Nicolela MT, et al. Threshold and variability properties of matrix frequency-doubling technology and standard automated perimetry in glaucoma. Investig Ophthalmol Vis Sci. 2005;46(7):2451–2457. DOI: 10.1167/iovs.05-0135

[82]

Artes P.H., Hutchison D.M., Nicolela M.T., et al. Threshold and variability properties of matrix frequency-doubling technology and standard automated perimetry in glaucoma // Investig Ophthalmol Vis Sci. 2005. Vol. 46, No. 7. P. 2451–2457. DOI: 10.1167/iovs.05-0135

[83]

Balian C. Structure and Function in Early Glaucoma. 2017.

[84]

Addepalli UK. Validating the ability of a vision technician in detecting glaucoma in a south Indian rupal population [dissertation]. University of New South Wales, 2018.

[85]

Addepalli U.K. Validating the ability of a vision technician in detecting glaucoma in a south Indian rupal population [dissertation]. University of New South Wales, 2018.

[86]

Iwase A, Tomidokoro A, Araie M. Performance of Frequency-Doubling Technology perimetry in a population-based prevalence survey of glaucoma. Ophthalmology. 2007;114(1):27–32. DOI: 10.1016/j.ophtha.2006.06.041

[87]

Iwase A., Tomidokoro A., Araie M. Performance of Frequency-Doubling Technology perimetry in a population-based prevalence survey of glaucoma // Ophthalmology. 2007. Vol. 114, No. 1. P. 27–32. DOI:10.1016/j.ophtha.2006.06.041

[88]

Mansberger SL, Edmunds B, Johnson CA, et al. Community visual field screening: prevalence of follow-up and factors associated with follow-up of participants with abnormal frequency doubling perimetry technology results. Ophthalmic Epidemiol. 2007;14(3): 134–140. DOI: 10.1080/09286580601174060

[89]

Mansberger S.L., Edmunds B., Johnson C.A., et al. Community visual field screening: prevalence of follow-up and factors associated with follow-up of participants with abnormal frequency doubling perimetry technology results // Ophthalmic Epidemiol. 2007. Vol. 14, No. 3. P. 134–140. DOI: 10.1080/09286580601174060

[90]

Racette L, Medeiros FA, Zangwill LM, et al. Diagnostic accuracy of the Matrix 24-2 and original N-30 frequency-doubling technology tests compared with standard automated perimetry. Investig Ophthalmol Vis Sci. 2008;49(3):954–960. DOI: 10.1167/iovs. 07-0493

[91]

Racette L., Medeiros F.A., Zangwill L.M., et al. Diagnostic accuracy of the Matrix 24-2 and original N-30 frequency-doubling technology tests compared with standard automated perimetry // Investig Ophthalmol Vis Sci. 2008. Vol. 49, No. 3. P. 954–960. DOI: 10.1167/iovs.07-0493

[92]

Giuffrè I. Frequency Doubling Technology vs Standard Automated Perimetry in Ocular Hypertensive Patients. Open Ophthalmol J. 2009;24(3):6–9. DOI: 10.2174/1874364100903010006

[93]

Giuffrè I. Frequency Doubling Technology vs Standard Automated Perimetry in Ocular Hypertensive Patients // Open Ophthalmol J. 2009. Vol. 24, No. 3. P. 6–9. DOI: 10.2174/1874364100903010006

[94]

Choi JA, Lee NY, Park CK. Interpretation of the Humphrey Matrix 24-2 test in the diagnosis of preperimetric glaucoma. Jpn J Ophthalmol. 2009;53(1):24–30. DOI: 10.1007/s10384-008-0604-0

[95]

Choi J.A., Lee N.Y., Park C.K. Interpretation of the Humphrey Matrix 24-2 test in the diagnosis of preperimetric glaucoma // Jpn J Ophthalmol. 2009. Vol. 53, No. 1. P. 24–30. DOI: 10.1007/s10384-008-0604-0

[96]

Prokosch V, Eter N. Correlation between early retinal nerve fiber layer loss and visual field loss determined by three different perimetric strategies: white-on-white, frequency-doubling, or flicker-defined form perimetry. Graefe’s Arch Clin Exp Ophthalmol. 2014;252:1599–1606. DOI: 10.1007/s00417-014-2718-z

[97]

Prokosch V., Eter N. Correlation between early retinal nerve fiber layer loss and visual field loss determined by three different perimetric strategies: white-on-white, frequency-doubling, or flicker-defined form perimetry // Graefe’s Arch Clin Exp Ophthalmol. 2014. Vol. 252. P. 1599–1606. DOI: 10.1007/s00417-014-2718-z

[98]

Meira-Freitas D, Tatham AJ, Lisboa R, et al. Predicting progression of glaucoma from rates of frequency doubling technology perimetry change. Ophthalmology. 2014;121(2):498–507. DOI: 10.1016/j.ophtha.2013.09.016

[99]

Meira-Freitas D., Tatham A.J., Lisboa R., et al. Predicting progression of glaucoma from rates of frequency doubling technology perimetry change // Ophthalmology. 2014. Vol. 121, No. 2. P. 498–507. DOI:10.1016/j.ophtha.2013.09.016

[100]

Horn FK, Scharch V, Mardin CY, et al. Comparison of frequency doubling and flicker defined form perimetry in early glaucoma. Graefe’s Arch Clin Exp Ophthalmol. 2016;254(5):937–946. DOI: 10.1007/s00417-016-3286-1

[101]

Horn F.K., Scharch V., Mardin C.Y., et al. Comparison of frequency doubling and flicker defined form perimetry in early glaucoma // Graefe’s Arch Clin Exp Ophthalmol. 2016. Vol. 254, No. 5. P. 937–946. DOI: 10.1007/s00417-016-3286-1

[102]

Park HYL, Lee J, Park CK. Visual field tests for glaucoma patients with initial macular damage: comparison between frequency-doubling technology and standard automated perimetry using 24-2 or 10-2 visual fields. J Glaucoma. 2018;27(7):627–634. DOI: 10.1097/IJG.0000000000000977

[103]

Park H.Y.L., Lee J., Park C.K. Visual field tests for glaucoma patients with initial macular damage: comparison between frequency-doubling technology and standard automated perimetry using 24-2 or 10-2 visual fields // J Glaucoma. 2018. Vol. 27, No. 7. P. 627–634. DOI: 10.1097/IJG.0000000000000977

[104]

Morejon A, Mayo-Iscar A, Martin R, et al. Development of a new algorithm based on FDT Matrix perimetry and SD-OCT to improve early glaucoma detection in primary care. Clin Ophthalmol. 2019;13:33–42. DOI: 10.2147/OPTH.S177581

[105]

Morejon A., Mayo-Iscar A., Martin R., et al. Development of a new algorithm based on FDT Matrix perimetry and SD-OCT to improve early glaucoma detection in primary care // Clin Ophthalmol. 2019. Vol. 13. P. 33–42. DOI: 10.2147/OPTH.S177581

[106]

Xin D, Greenstein VC, Ritch R, et al. A comparison of functional and structural measures for identifying progression of glaucoma. Investig Ophthalmol Vis Sci. 2011;52(1):519–526. DOI: 10.1167/iovs.10-5174

[107]

Xin D., Greenstein V.C., Ritch R., et al. A comparison of functional and structural measures for identifying progression of glaucoma // Investig Ophthalmol Vis Sci. 2011. Vol. 52, No. 1. P. 519–526. DOI: 10.1167/iovs.10-5174

[108]

Hu R, Wang C, Racette L. Comparison of matrix frequency-doubling technology perimetry and standard automated perimetry in monitoring the development of visual field defects for glaucoma suspect eyes. PLoS ONE. 2017;12(5):1–14. DOI: 10.1371/journal.pone.0178079

[109]

Hu R., Wang C., Racette L. Comparison of matrix frequency-doubling technology perimetry and standard automated perimetry in monitoring the development of visual field defects for glaucoma suspect eyes // PLOS ONE. 2017. Vol. 12, No. 5. P. 1–14. DOI: 10.1371/journal.pone.0178079

[110]

Wesselink C, Jansonius NM. Glaucoma progression detection with frequency doubling technology (FDT) compared to standard automated perimetry (SAP) in the Groningen Longitudinal Glaucoma Study. Ophthalmic Physiol Opt. 2017;37(5):594–601. DOI: 10.1111/oро.12401

[111]

Wesselink C., Jansonius N.M. Glaucoma progression detection with frequency doubling technology (FDT) compared to standard automated perimetry (SAP) in the Groningen Longitudinal Glaucoma Study // Ophthalmic Physiol Opt. 2017. Vol. 37, No. 5. P. 594–601. DOI: 10.1111/oро.12401

[112]

Wall M, Johnson CA, Zamba KD. SITA-Standard perimetry has better performance than FDT2 matrix perimetry for detecting glaucomatous progression. Br J Ophthalmol. 2018;102:1396–1401. DOI: 10.1136/bjophthalmol-2017-310894

[113]

Wall M., Johnson C.A., Zamba K.D. SITA-Standard perimetry has better performance than FDT2 matrix perimetry for detecting glaucomatous progression // Br J Ophthalmol. 2018. Vol. 102. P. 1396–1401. DOI: 10.1136/bjophthalmol-2017-310894

[114]

Brusini P, Salvetat ML, Zeppieri M, et al. Frequency doubling technology perimetry with the Humphrey Matrix 30-2 test. J Glaucoma. 2006;15(2):77–83. DOI: 10.1097/00061198-200604000-00001

[115]

Brusini P., Salvetat M.L., Zeppieri M., et al. Frequency doubling technology perimetry with the Humphrey Matrix 30-2 test // J Glaucoma. 2006. Vol. 15, No. 2. P. 77–83. DOI: 10.1097/00061198-200604000-00001

[116]

Liu S, Yu M, Weinreb RN, et al. Frequency-DoublingTechnology Perimetry for Detection of the Development of Visual Field Defects in Glaucoma Suspect Eyes. JAMA Ophthalmol. 2014;132(1):77–83. DOI: 10.1001/jamaophthalmol.2013.5511

[117]

Liu S., Yu M., Weinreb R.N., et al. Frequency-DoublingTechnology Perimetry for Detection of the Development of Visual Field Defects in Glaucoma Suspect Eyes // JAMA Ophthalmol. 2014. Vol. 132, No. 1. P. 77–83. DOI: 10.1001/jamaophthalmol.2013.5511

[118]

Clement CI, Goldberg I, Healey PR, et al. Humphrey matrix frequency doubling perimetry for detection of visual-field defects in open-angle glaucoma. Br J Ophthalmol. 2009;93(5):582–588. DOI: 10.1136/bjo.2007.119909

[119]

Clement C.I., Goldberg I., Healey P.R., et al. Humphrey matrix frequency doubling perimetry for detection of visual-field defects in open-angle glaucoma // Br J Ophthalmol. 2009. Vol. 93, No. 5. P. 582–588. DOI: 10.1136/bjo.2007.119909

[120]

Leeprechanon N, Giangiacomo A, Fontana H, et al. Frequency-doubling perimetry: comparison with standard automated perimetry to detect glaucoma. Am J Ophthalmol. 2007;143(2):263–271. DOI: 10.1016/j.ajo.2006.10.033

[121]

Leeprechanon N., Giangiacomo A., Fontana H., et al. Frequency-doubling perimetry: comparison with standard automated perimetry to detect glaucoma // Am J Ophthalmol. 2007. Vol. 143, No. 2. P. 263–271. DOI: 10.1016/j.ajo.2006.10.033

[122]

Yousefi S, Goldbaum MH, Zangwill LM, et al. Recognizing patterns of visual field loss using unsupervised machine learning. Proc SPIE Int Soc Opt Eng. 2014:90342. DOI: 10.1117/12.2043145

[123]

Yousefi S., Goldbaum M.H., Zangwill L.M., et al. Recognizing patterns of visual field loss using unsupervised machine learning // Proc SPIE Int Soc Opt Eng. 2014. Vol. 2014. P. 90342M. DOI: 10.1117/12.2043145

[124]

Alawa КА, Nolan RP, Han E, et al. Low-cost, smartphone-based frequency doubling technology visual field testing using a headmounted display. Br J Ophthalmol. 2019;105(3):440–444. DOI: 10.1136/bjophthalmol-2019-314031.

[125]

Alawa K.А., Nolan R.P., Han E., et al. Low-cost, smartphone-based frequency doubling technology visual field testing using a headmounted display // Br J Ophthalmol. 2019. Vol. 105, No. 3. P. 440–444. DOI: 10.1136/bjophthalmol-2019-314031

[126]

Pinto LM, Costa EF, Melo LA, et al. Structure-function correlations in glaucoma using matrix and standard automated perimetry versus time-domain and spectral-domain OCT devices. Investig Ophthalmol Vis Sci. 2014;55:3074–3080. DOI: 10.1167/iovs.13-13664

[127]

Pinto L.M., Costa E.F., Melo L.A., et al. Structure-function correlations in glaucoma using matrix and standard automated perimetry versus time-domain and spectral-domain OCT devices. Investig // Ophthalmol Vis Sci. 2014. Vol. 55. P. 3074–3080. DOI: 10.1167/iovs.13-13664

[128]

Doozandeh A, Irandoost F, Mirzajani A, et al. Comparison of Matrix Frequency-Doubling Technology (FDT) Perimetry with the SWEDISH Interactive Thresholding Algorithm (SITA) Standard Automated Perimetry (SAP) in Mild Glaucoma. Medical Hypothesis, Discovery and Innovation in Ophthalmology. 2017;6(3):98–104.

[129]

Doozandeh A., Irandoost F., Mirzajani A., et al. Comparison of Matrix Frequency-Doubling Technology (FDT) Perimetry with the SWEDISH Interactive Thresholding Algorithm (SITA) Standard Automated Perimetry (SAP) in Mild Glaucoma // Medical Hypothesis, Discovery and Innovation in Ophthalmology. 2017. Vol. 6, No. 3. P. 98–104.

[130]

Morozov VI, Jakovlev AA. Zabolevanija zritel’nogo puti. Klinika, diagnostika, lechenie. Moscow: BINOM, 2010. (In Russ.)

[131]

Морозов В.И., Яковлев А.А. Заболевания зрительного пути. Клиника, диагностика, лечение. М.: БИНОМ, 2010.

[132]

Ishmanova SA. Jekzogennye i jendogennye faktory, opredeljajushhie osobennosti kliniki i techenija rassejannogo skleroza [dissertation]. Kazan, 2003 (In Russ.)

[133]

Ишманова С.А. Экзогенные и эндогенные факторы, определяющие особенности клиники и течения рассеянного склероза: дис. … докт. мед. наук. Казань, 2003.

[134]

Confavreux C, Vukusic S. The clinical epidemiology of multiple sclerosis. Neuroimaging Clin N Am. 2008;18(4):589–622. DOI: 10.1016/j.nic.2008.09.002

[135]

Confavreux C., Vukusic S. The clinical epidemiology of multiple sclerosis // Neuroimaging Clin N Am. 2008. Vol. 18, No. 4. P. 589–622. DOI: 10.1016/j.nic.2008.09.002

[136]

Ascherio A, Munger K. Epidemiology of multiple sclerosis: from risk factors to prevention. Seminars in neurology. 2008;28(1):17–28. DOI: 10.1055/s-2007-1019126

[137]

Ascherio A., Munger K. Epidemiology of multiple sclerosis: from risk factors to prevention // Seminars in neurology. 2008. Vol. 28, No. 1. P. 17–28. DOI: 10.1055/s-2007-1019126

[138]

Levin LI, Kassandra L, Munger ScD, et al. Primary infection with the Epstein–Barr virus and risk of multiple sclerosis. Annal Neurol. 2010;67(6):824–830. DOI:10.1002/ana.21978

[139]

Levin L.I., Kassandra L., Munger Sc.D., et al et al. Primary infection with the Epstein–Barr virus and risk of multiple sclerosis // Annal Neurol. 2010. Vol. 67, No. 6. P. 824–830. DOI: 10.1002/ana.21978

[140]

Bahinski FV, Galinovskaja NV, Usova NN, et al. Multiple sclerosis: modern view on the problem (literature review). Problemy zdorov’ja i jekologii. 2010;(25):75–80. (In Russ.)

[141]

Багинский Ф.В., Галиновская Н.В., Усова Н.Н., и др. Рассеянный склероз: современное состояние проблемы (обзор литературы) // Проблемы здоровья и экологии. 2010. Т. 3, № 25. С. 75–80.

[142]

Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology. 2018;17(2):162–173. DOI: 10.1016/S1474-4422(17)30470-2.

[143]

Thompson A.J., Banwell B.L., Barkhof F., et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria // The Lancet Neurology. 2018. Vol. 17, No. 2. P. 162–173. DOI: 10.1016/S1474-4422(17)30470-2

[144]

Kicherova OA, Reikhert LI. Demyelinating diseases: the correctness of the wording of a medical and moral positions (literature review). Medicinskaja nauka i obrazovanie Urala. 2019;20(4):186–192. (In Russ.)

[145]

Кичерова О.А., Рейхерт Л.И. Демиелинизирующие заболевания: современные стратегии постановки диагноза достоверного рассеянного склероза (обзор литературы) // Медицинская наука и образование Урала. 2019. Т. 20, № 4. С. 186–192.

[146]

Costello F. The afferent visual pathway: designing a structural-functional paradigm of multiple sclerosis. International Scholarly Research Notices Neurology. 2013;2013:134858. DOI: 10.1155/2013/134858

[147]

Costello F. The afferent visual pathway: designing a structural-functional paradigm of multiple sclerosis // International Scholarly Research Notices Neurology. 2013. Vol. 2013. P. 134858. DOI: 10.1155/2013/134858

[148]

Bisaga GN, Gajkova ON, Onishhenko LS, et al. Morfologicheskie osobennosti ochagov demielinizacii v kore golovnogo mozga pri rassejannom skleroze. Neurology Bulletin. 2010;42(1):127–128. (In Russ.)

[149]

Бисага Г.Н., Гайкова О.Н., Онищенко Л.С., и др. Морфологические особенности очагов демиелинизации в коре головного мозга при рассеянном склерозе // Неврологический вестник. 2010. Т. 42, № 1. С. 127–128.

[150]

Shmidt TE, Jahno NN. Rassejannyj skleroz. Moscow: MEDpress-inform, 2010. 272 p. (In Russ.)

[151]

Шмидт Т.Е, Яхно Н.Н. Рассеянный склероз. М.: МЕДпресс-информ, 2010. 272 с.

[152]

Kovalenko AV, Bisaga GN, Gaykova ON, et al. Pathomorphology damage of the optic nerve and chiasm in multiple sclerosis. Bulletin of the Russian Military Medical Academy. 2011;3(35): 126–132. (In Russ.)

[153]

Коваленко А.В., Бисага Г.Н., Гайкова О.Н., и др. Патоморфологические изменения зрительного нерва и хиазмы при рассеянном склерозе // Вестник Российской военно-медицинской академии. 2011. Т. 3, № 35. С. 126–132.

RIGHTS & PERMISSIONS

Tikhonovskaya I.A., Simakova I.L.

AI Summary AI Mindmap
PDF (283KB)

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/